I Non-Homogeneous Robin Boundary conditions and Interpretations of Signs

ConicalDrupe
Messages
2
Reaction score
0
TL;DR Summary
When dealing with the advection-diffusion equation with robin conditions. How may we control the direction and magnitude of flux in a variety of situations?
I have been solving the constant coefficient 1D advection-diffusion equation ##\frac{\partial c}{\partial t} + v\frac{\partial c}{\partial x} = D\frac{\partial^2 c}{\partial x^2}## on ##0<x<L,t>0## with a variety of robin BC's.
Namely $$vc + D\frac{\partial c}{\partial x} = J^f ~~at~~ x=L $$ $$vc - D\frac{\partial c}{\partial x} = J^b ~~at~~ x=0$$
When ##J^{f/b}=0##, we have a perfect insulating boundary. Wikipedia states the reasoning behind the signs of the diffusive flux term in the BC's. Positive at x=L because the normal points in the positive direction, and negative at x=0 because the normal points in the negative direction.

I have two main questions coming from this scenario.
(1) What is the physical interpretation of changing the sign of the diffusive flux term in the BC? For ex. ##vc - D\frac{\partial c}{\partial x} = J^f ~~at~~ x=L ## and ##J^f## is positive, does this mean we have an influx or efflux at x=L? Is there a way of understanding these cases in terms of direction using normal vectors?
(2) How can we control the direction of the flux if ##J^{f/b}## is a parameter of our choosing? Obviously choosing ##J^{f/b} \neq 0## gives us control on flux passing at the boundary, but does ##J^{f/b}>0## or ##J^{f/b}<0## have a predicted effect on the direction flux travels?

I have run a few numerical experiments in MATLAB using the Crank-Nicolson method with the two types of robin bc's above. One BC set with positive diffusive flux at x=L and negative at x=0. The other has negative diffusive flux at both x=0 and x=L. The results are confusing to me, and could be due to numerical issues. My goal is to have ##J^{f/b}>0## and have influx at x=L and efflux at x=0. None of my experiments so far have shown this result.
 
Last edited:
Physics news on Phys.org
You really need to use LateX for these equations, for me personally. I think others will be similarly disposed. FYI
It will only hurt for a while, but it is a pain..
 
hutchphd said:
You really need to use LateX for these equations, for me personally. I think others will be similarly disposed. FYI
It will only hurt for a while, but it is a pain..
Thanks for the response, I completely agree! I had great difficulty with mathJax and my browser, it is slightly less painful the second and third time
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top