We are given the ODE:
$$y'=\frac{2xye^{\left(\frac{x}{y} \right)^2}}{y^2+y^2e^{\left(\frac{x}{y} \right)^2}+2x^2e^{\left(\frac{x}{y} \right)^2}}$$
We observe that we must have $y\ne0$ so multiplying the right by $$1=\frac{y^{-2}}{y^{-2}}$$ will not result in the loss of any trivial solution:
$$y'=\frac{2\dfrac{x}{y}e^{\left(\frac{x}{y} \right)^2}}{1+e^{\left(\frac{x}{y} \right)^2}+2\left(\dfrac{x}{y} \right)^2e^{\left(\frac{x}{y} \right)^2}}$$
Now the ODE is in the form $$y'=f\left(\frac{x}{y} \right)$$ and we may use the substitution:
$$v=\frac{y}{x}\implies y=vx\,\therefore y'=v+xv'$$
Hence, the ODE may now be written:
$$v+xv'=\frac{\dfrac{2}{v}e^{v^{-2}}}{1+e^{v^{-2}}+\dfrac{2}{v^2}e^{v^{-2}}}$$
Multiplying the right side by $$1=\frac{v^2}{v^2}$$ we obtain:
$$v+xv'=\frac{2ve^{v^{-2}}}{v^2+v^2e^{v^{-2}}+2e^{v^{-2}}}$$
Subtracting through by $v$ and simplifying, we get:
$$xv'=-\frac{v^3\left(1+e^{v^{-2}} \right)}{v^2\left(1+e^{v^{-2}} \right)+2e^{v^{-2}}}$$
Separation of variables yields:
$$\frac{v^2\left(1+e^{v^{-2}} \right)+2e^{v^{-2}}}{v^3\left(1+e^{v^{-2}} \right)}\,dv=-\frac{1}{x}\,dx$$
On the left side, dividing each term by $$1+e^{v^{-2}}$$ allows us to write:
$$\left(\frac{1}{v}-\frac{-2v^{-3}e^{v^{-2}}}{1+e^{v^{-2}}} \right)\,dv=-\frac{1}{x}\,dx$$
Now observing that:
$$\frac{d}{dv}\left(1+e^{v^{-2}} \right)=-2v^{-3}e^{v^{-2}}$$
we may integrate as follows:
$$\ln|v|-\ln\left(1+e^{v^{-2}} \right)=-\ln|x|+C$$
Back-substituting for $v$, we obtain:
$$\ln\left|\frac{y}{x} \right|-\ln\left(1+e^{\left(\frac{x}{y} \right)^2} \right)=-\ln|x|+C$$
Adding $$\ln|x|$$ to both sides, we obtain:
$$\ln|y|-\ln\left(1+e^{\left(\frac{x}{y} \right)^2} \right)=C$$
Using a property of logs, we may rewrite the left side as:
$$\ln\left|\frac{y}{1+e^{\left(\frac{x}{y} \right)^2}} \right|=C$$
Converting from logarithmic to exponential form, we find:
$$\left|\frac{y}{1+e^{\left(\frac{x}{y} \right)^2}} \right|=e^{C}$$
If we redefine the constant on the right as any positive value (since $y\ne0$), we have:
$$\left|\frac{y}{1+e^{\left(\frac{x}{y} \right)^2}} \right|=C$$ where $$0<C$$
Now, if we redefine the constant again as any real value except zero, we may write:
$$\frac{y}{1+e^{\left(\frac{x}{y} \right)^2}}=C$$ where $$C\ne0$$
And if we so choose, we may arrange this as the implicit solution:
$$y=C\left(1+e^{\left(\frac{x}{y} \right)^2} \right)$$