Non quadratic potentials and quantization in QFT (home exercise)

Click For Summary
SUMMARY

The discussion focuses on the analysis of non-quadratic potentials in Quantum Field Theory (QFT) and the implications of expanding the potential around stable minima. The stationary points of the potential ##V(\phi)## were identified, revealing that only ##\phi^0_3## is a stable minimum. The approximated potential was derived as ##V(\phi)={{9m^2}\over{2}}(\phi-{{2m}\over{\sqrt{\lambda}}})^2##, leading to a new Lagrangian that describes a fermion field ##\Psi## and a neutral scalar particle ##\chi##. The discussion raises critical questions about the validity of quadratic expansions and the potential loss of interaction terms in QFT.

PREREQUISITES
  • Understanding of Quantum Field Theory (QFT) principles
  • Familiarity with Lagrangian density formulations
  • Knowledge of potential energy functions and their minima
  • Experience with Taylor series expansions in the context of physics
NEXT STEPS
  • Investigate the implications of non-quadratic potentials in QFT
  • Learn about the derivation of mass spectra from potential expansions
  • Explore the role of interaction terms in Lagrangian formulations
  • Study the Feynman rules in Yukawa theory and their applications
USEFUL FOR

Physicists, particularly those specializing in Quantum Field Theory, theoretical physicists analyzing particle interactions, and graduate students seeking to deepen their understanding of potential energy in field theories.

manfromearth
Messages
5
Reaction score
0
Homework Statement
I'm given a field theory described by the lagrangian density
$$L=i\bar{\Psi}\gamma^{\mu}\partial_{\mu}\Psi-{{1}\over{2}}\partial_{\mu}\phi\partial^{\mu}\phi-g\phi\bar{\Psi}\Psi-{{\lambda}\over{4}}\phi^4+{{3m^2}\over{2}}\phi^2+{{2m^3}\over{\sqrt{\lambda}}}\phi$$


I'm asked to (1) find all the particles described by this theory, (2) find the Feynman rules and then (3) compute the differential cross section at tree level for the process $$\pi\pi\rightarrow\pi\pi$$, where ##\pi## is the particle described by excitations of ##\phi##
Relevant Equations
I wrote the potential for the ##\phi## field as
$$V(\phi)={{\lambda}\over{4}}\phi^4-{{3m^2}\over{2}}\phi^2-{{2m^3}\over{\sqrt{\lambda}}}\phi$$
I noticed that ##V(\phi)## has nonzero minima, therefore I found the stationary points as ##{{\partial{V}}\over{\partial\phi}}=0##, and found the solutions:
$$\phi^0_{1,2}=-{{m}\over{\sqrt{\lambda}}}\quad \phi^0_3={{2m}\over{\sqrt{\lambda}}}$$
of these, only ##\phi^0_3## is a stable minimum, while the other two solutions are inflection points of ##V##. (I attached a plot of such potential)

Now, I expect that expanding ##V(\phi)## around ##\phi^0_3## should give me the so called "mass spectrum" (because I was told so), so what I did was to approximate ##V(\phi)## around the minimum configuration and substitute such approximated potential in the lagrangian density ##L## as follows:

$$V(\phi)=V(\phi^0_3)+{{1}\over{2}}V^{\prime\prime}(\phi-\phi^0_3)^2+O(\Delta\phi^2)$$

dropping constant terms and higher orders, I found the approximated potential as:

$$V(\phi)={{9m^2}\over{2}}(\phi-{{2m}\over{\sqrt{\lambda}}})^2$$
Then, I defined a new field ##\chi## as the oscillation from the equilibrium position: ##\chi=\phi-{{2m}\over{\lambda}}## and by substituting ##\chi## in ##L## I found a new lagrangian in terms of the fields ##\Psi## and ##\chi##:
$$\tilde{L}=\bar{\Psi}(i\gamma^{\mu}\partial_{\mu}-{{2mg}\over{\sqrt{\lambda}}})\Psi-{{1}\over{2}}(\partial_{\mu}\chi)^2-g\chi\bar{\Psi}\Psi-{{9m^2}\over{2}}\chi^2$$
So I conclude that this lagrangian describes a fermion field ##\Psi## of mass ##m_{\Psi}=2mg/\sqrt{\lambda}## and a neutral scalar particle ##\chi## of mass ##m_{\chi}=3m##. The Feynman rules consist of those from Yukawa theory and come from the ##g\chi\bar{\Psi}\Psi## term.

This is where I get confused. Assuming that the ##\pi## particle is the one associated with the field ##\chi##, the process $$\pi\pi\rightarrow\pi\pi$$ cannot be described at tree level using only Yukawa vertices. This makes me believe that I got the interaction terms wrong, and that I should not have expanded ##V##, however I remember hearing something about "fields are just excitations around stable configurations" and "we can only quantize around the minimum" which was the initial motivation to do all of the above.

I guess my question is if it is always sensible to expand the potential at quadratic order, or if in doing so I loose interactions?
Am I missing something?
 

Attachments

  • Schermata 2023-01-23 alle 15.33.36.png
    Schermata 2023-01-23 alle 15.33.36.png
    13.2 KB · Views: 138
Physics news on Phys.org
You don't need the Taylor expansion part. You get the masses by looking at the mass terms, ie the ones quadratic in fields. Where did you see that you have to do the Taylor expansion? Perhaps they didn't mean Taylor expansion but rather what you did with the χ field. After all doing a Taylor expansion doesn't make that much sense here, it is already a polynomial. Dropping terms will cost you interactions.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
4
Views
5K
Replies
1
Views
2K