- #1
thetasaurus
- 7
- 0
It is known that the area of a sector of a polar curve is
[itex]\frac{1}{2}\int r^{2} d \theta[/itex]
This of course comes from the method of finding the area of an arc geometrically, by multiplying the area of the circle by the fraction we want
[itex]\frac{\theta}{2\pi}\pi r^{2}[/itex]
Today I learned how to calculate the arc length of a polar curve. The method is similar to the Cartesian method (by integrating [itex]ds[/itex]), where
[itex]ds = \sqrt{r^{2}+ \left(\frac{dr}{dθ}\right)^{2}}[/itex]
I found this odd, considering the parallels between area in calculus and geometry. I figured it would be based on the geometric arc length formula, where the circumference is multiplied by the fraction of the total circle
[itex]\frac{\theta}{2\pi} 2 \pi r[/itex]
Thus giving [itex]θr[/itex]. In order to integrate small pieces of arc with respect to θ as defined by [itex]r(θ)[/itex] (analogous to summing the area of small sectors), we have
[itex]\int r dθ[/itex]
However this doesn't work, and I don't know why. The geometric formulas both integrals are derived from are correct, but this formula doesn't give you the arc of a polar curve. Does anyone know why it doesn't work? Better yet is there a way to fix it?
[itex]\frac{1}{2}\int r^{2} d \theta[/itex]
This of course comes from the method of finding the area of an arc geometrically, by multiplying the area of the circle by the fraction we want
[itex]\frac{\theta}{2\pi}\pi r^{2}[/itex]
Today I learned how to calculate the arc length of a polar curve. The method is similar to the Cartesian method (by integrating [itex]ds[/itex]), where
[itex]ds = \sqrt{r^{2}+ \left(\frac{dr}{dθ}\right)^{2}}[/itex]
I found this odd, considering the parallels between area in calculus and geometry. I figured it would be based on the geometric arc length formula, where the circumference is multiplied by the fraction of the total circle
[itex]\frac{\theta}{2\pi} 2 \pi r[/itex]
Thus giving [itex]θr[/itex]. In order to integrate small pieces of arc with respect to θ as defined by [itex]r(θ)[/itex] (analogous to summing the area of small sectors), we have
[itex]\int r dθ[/itex]
However this doesn't work, and I don't know why. The geometric formulas both integrals are derived from are correct, but this formula doesn't give you the arc of a polar curve. Does anyone know why it doesn't work? Better yet is there a way to fix it?