MHB Noora's questions at Yahoo Answers regarding linear approximations

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Help with CALCULUS approximations PLEASE?!?


a) Using an appropriate linear approximation approximate (26.98)^(4/3)

b) Suppose a function is defines implicitly by ((x^2)(y^2)) - 3y = 2x^4 - 4. Find the approximate value of y where (x, y) starts as (1,1) and x changes from 1 to 1.1

THANK YOU!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Noora,

a) Let's define:

$$f(x)=x^{\frac{4}{3}}$$

Hence:

$$f'(x)=\frac{4}{3}x^{\frac{1}{3}}$$

For a small $\Delta x$, we know:

$$\frac{\Delta f}{\Delta x}\approx\frac{df}{dx}$$

Multiplying through by $\Delta x$ and using $Delta f=f\left(x+\Delta x \right)-f(x)$ we have:

$$f\left(x+\Delta x \right)-f(x)=\frac{df}{dx}\Delta x$$

$$f\left(x+\Delta x \right)=\frac{df}{dx}\Delta x+f(x)$$

Now, choosing:

$$x=27,\,\Delta x=-0.02$$

and using our function definition, we obtain:

$$(26.98)^{\frac{4}{3}}\approx\frac{4}{3}(27)^{\frac{1}{3}}(-0.02)+(27)^{\frac{4}{3}}=81-0.08=80.92$$

b) We are given the implicit relation:

$$x^2y^2-3y=2x^4-4$$

Implicitly differentiating with respect to $x$, we find:

$$x^2\cdot2y\frac{dy}{dx}+2xy^2-3\frac{dy}{dx}=8x^3$$

$$\frac{dy}{dx}\left(2x^2y-3 \right)=8x^3-2xy^2$$

$$\frac{dy}{dx}=\frac{2x\left(4x^2-y^2 \right)}{2x^2y-3}$$

Now, for a small $\Delta x$, we have:

$$\frac{\Delta y}{\Delta x}\approx\frac{dy}{dx}$$

$$y\left(x+\Delta x \right)\approx\frac{dy}{dx}\cdot\Delta x+y(x)$$

Using the given:

$$(x,y)=(1,1),\,\Delta x=0.1$$

we find:

$$y(1.1)\approx\frac{2(1)\left(4(1)^2-(1)^2 \right)}{2(1)^2(1)-3}\cdot0.1+1=0.4$$
 
Thank you SO much for your time and help! Can you please help me out with my other calculus-related questions on yahoo answers that i posted recently? Thank you!
 
ayahouyee said:
Thank you SO much for your time and help! Can you please help me out with my other calculus-related questions on yahoo answers that i posted recently? Thank you!

You're welcome! I'm glad you joined us here! :D

I would recommend you post them here in our Calculus sub-forum. That would be much easier than for me to try to do a search for your topics at Yahoo. :D

Also being able to use $\LaTeX$ here makes for much more readable help.
 
Thanks! I just made a new thread with my questions :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top