Norms of compositions of bounded operators between different spaces

  • Thread starter Thread starter AxiomOfChoice
  • Start date Start date
  • Tags Tags
    Bounded Operators
AxiomOfChoice
Messages
531
Reaction score
1
Suppose I have B: X\to Y and A: Y\to Z, where X,Y,Z are Banach spaces and B\in \mathcal L(X,Y) and A\in \mathcal L(Y,Z); that is, both of these operators are bounded. Does it follow that AB \in \mathcal L(X,Z) and
<br /> \| AB \|_{\mathcal L(X,Z)} \leq \|A\|_{\mathcal L(Y,Z)} \|B\|_{\mathcal L(X,Y)}<br />
It seems like this should be the case, but any time I try to prove a functional analytic result like this, I always get mired in uncertainty about the details...
 
Physics news on Phys.org
Hmmm...okay, well, I think I've found my answer in Eqn. 3.3 of this PDF. Does this suffice for a proof of this result:
<br /> \| AB \|_{\mathcal L(X,Z)} = \sup_{x\in X, \|x\|_X = 1} \|ABx\|_Z \leq \sup_{x\in X, \|x\|_X = 1} \|A\|_{\mathcal L(Y,Z)} \|Bx\|_Y = \|A\|_{\mathcal L(Y,Z)} \sup_{x\in X, \|x\|_X = 1} \|Bx\|_Y = \|A\|_{\mathcal L(Y,Z)} \|B\|_{\mathcal L(X,Y)}.<br />
 
This is ok. Another way of proving it is to note that ##\|A\|## is the smallest number ##C## such that \|Ax\|\leq \|A\|\|x\| for each ##x## in the domain. It follows that for each ##x\in X##: \|ABx\|\leq \|A\|\|Bx\|\leq \|A\|\|B\|\|x\| So ##\|A\|\|B\|## is some number ##C## such that ##\|ABx\|\leq C\|x\|##. It follows that ##AB## is bounded and that ##\|AB\|\leq \|A\|\|B\|##, since ##\|AB\|## is by definition the smallest ##C## such that ##\|ABx\|\leq C\|x\|##.
 

Similar threads

Back
Top