Not understanding these manipulations involving Partial Derivatives

MatinSAR
Messages
673
Reaction score
204
Homework Statement
Find partial derivatives
Relevant Equations
dy/dx=(dy/dt)(dt/dx)
Can someone please help me to find out what happened here ?

1675445974557.png
 
Physics news on Phys.org
It's differentiating ##f## with respect to its arguments, then differentiating the arguments with respect to ##t##. It might be clearer if you write ##u = tx## and ##v=ty##, then
$$\partial f(u,v) / \partial t = (\partial f/ \partial u) (\partial u/ \partial t) + (\partial f/ \partial v) (\partial v/ \partial t)$$
 
  • Like
Likes SammyS, Mark44 and MatinSAR
ergospherical said:
It's differentiating ##f## with respect to its arguments, then differentiating the arguments with respect to ##t##. It might be clearer if you write ##u = tx## and ##v=ty##, then
$$\partial f(u,v) / \partial t = (\partial f/ \partial u) (\partial u/ \partial t) + (\partial f/ \partial v) (\partial v/ \partial t)$$
That "tx" confused me ...
Now it's clear...
Thank you for your time 🙏🙏
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top