I DID misunderstand the question! There were TWO things asked:
1) Find A(k) which is what Tide was responding to.
Since S(n), the "partial sum is defined as A(1)+ A(2)+ ...+ A(n),
A(n)= S(n)- S(n-1)= (n-1)/(n+1) - (n-1-1)/(n-1+1)= (n-1)/(n+1)- (n-2)/n
= n(n-1)/n(n+1)- (n+1)(n-2)/n(n+1)= (n2-n-n2+n+2)/n(n+1)
= 2/n(n+1).
2) Since A(k) converges if and only if the sequence of partial sums converges, look at
S(n)= (n-1)/(n+1). Divide both numerator and denominator by n: (1- 1/n)/(1+ 1/n).
As n goes to infinity, 1/n goes to 0 so the S(n) converges to 1.
Yes, Σ A(k) converges. In fact, it converges to 1.