Number of complex calculations in FFT and inverse FFT

AI Thread Summary
The discussion focuses on calculating the total number of complex multiplications required for FFT and inverse FFT operations on given vectors. The participants analyze the lengths of the vectors and the implications of zero-padding to ensure compatibility in MATLAB. They clarify that the FFT algorithm operates under the principle of O(N log N), emphasizing that the number of operations is not strictly equal to this formula but reflects how the algorithm scales with data size. There is confusion regarding the application of FFT to non-power-of-two lengths, particularly with one vector of length 5. The conversation underscores the importance of understanding the underlying calculations and the role of padding in achieving the correct dimensions for FFT processing.
Jimmy Johnson
Messages
27
Reaction score
0

Homework Statement



Calculate the total number of compex multiplications required for the calculation in (b) when FFTs are used to perform the Discrete Fourier Transforms and Inverse Discrete Fourier Transforms.[/B]
There were two FFT multiplied together and one inverse FFT of that product to solve B.

x1(n) = [1, 0, −1, 1]

x2(n) = [2, 3, 2, 0, 1

Homework Equations


[/B]
Nlog2N

The Attempt at a Solution


[/B]
The vectors were padded with zeros but I'm working under the assumption that can be negated.

x1(n) = 4log24 = 8
x2(n) = 5log25 = 11.61

product of both created an 8 length vector

8log28 = 24Do I add these? The 5 one doesn't seem correct, something about it being a prime factor that doesn't hold for the equation?
 
Physics news on Phys.org
Jimmy Johnson said:

Homework Equations


[/B]
Nlog2N
Note that the FFT algorithm scales as ##O(N \log_2 N)##, not that the number of operations is exactly ##N \log_2 N## (I don't know if this is relevant to your problem, because I don't know how your teacher presented the material).

Jimmy Johnson said:
The vectors were padded with zeros but I'm working under the assumption that can be negated.
Why? What is the computer actually calculating?
Jimmy Johnson said:
The 5 one doesn't seem correct, something about it being a prime factor that doesn't hold for the equation?
You probably only learned about an algorithm that works for ##2^N## data points. Therefore an FFT on length 5 doesn't make any sense.
 
What is the O on that scale equation?

The calculation is the circular convolution of the x1(t) and x2(t) through ifft(fftx1padded)*(fftx2padded), so the padding was adding zeroes to the vector so that it was the same length and therefore achievable in matlab? after convolution a length 8 was determined and x1&2(t) are 4&5 length vectors respectively?

So would my data points actually be 2^4 and 2^5?
 
Jimmy Johnson said:
What is the O on that scale equation?
It's big O notation. It tells you how an algorithm scales when you change the size of the data. If an algorithm is of order ##O(n^2)##, then doubling the number of data points will result in about 4 times the number of operations. But it doesn't mean that it will perform exactly ##n^2## operations. The actual number of operations could be ##4 n^2 + 2 n##.

Jimmy Johnson said:
The calculation is the circular convolution of the x1(t) and x2(t) through ifft(fftx1padded)*(fftx2padded), so the padding was adding zeroes to the vector so that it was the same length and therefore achievable in matlab? after convolution a length 8 was determined and x1&2(t) are 4&5 length vectors respectively?
Why is padding necessary? What do you think MATLAB is doing with these zeros?
 

Similar threads

Back
Top