MHB Number of real roots of a quartic

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Roots
CaptainBlack
Messages
801
Reaction score
0
rayman's question from another place:

Could someone help me with this problem, I have no idea how to start with it
How many real roots does this polynomial have p(x)=x^4-x^3-1?
Clearly state the argument that explains the number of real roots.Thank you for any help

Descartes rule of signs tells you this has exactly 1 positive root, and exactly 1 negative root, so it has two real roots.

CB
 
Last edited:
Mathematics news on Phys.org
The Descartes rule establishes the maximum number of positive/negative real roots that a polynomial can have but it gives no information about the effective number of the real roots of a polynomial. In our case is $\displaystyle p(x)= x^{4}-x^{3} -1$ and, in my opinion, the number of its real root can be found considering the polynomial $\displaystyle q(x)= x^{4}-x^{3}$. It is easy enough to see that $q(x)$ has a root of order 3 in x=0 and a root of order 1 in x=1. Furthermore q(x) has a minimum in $x=\frac{3}{4}$ and here is $q(x)=- \frac{27}{256}$. Now if we consider the quartic equation $\displaystyle q(x)+a=0$, on the basis of consideration we have just done, it is easy to find that the quartic equation has two real roots for $a<\frac{27}{256}$, one real root of order 2 for $a=\frac{27}{256}$ and no real roots for $a>\frac{27}{256}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The Descartes rule establishes the maximum number of positive/negative real roots that a polynomial can have but it gives no information about the effective number of the real roots of a polynomial. In our case is $\displaystyle p(x)= x^{4}-x^{3} -1$ and, in my opinion, the number of its real root can be found considering the polynomial $\displaystyle q(x)= x^{4}-x^{3}$. It is easy enough to see that $q(x)$ has a root of order 3 in x=0 and a root of order 1 in x=1. Furthermore q(x) has a minimum in $x=\frac{3}{4}$ and here is $q(x)=- \frac{27}{256}$. Now if we consider the quartic equation $\displaystyle q(x)+a=0$, on the basis of consideration we have just done, it is easy to find that the quartic equation has two real roots for $a<\frac{27}{256}$, one real root of order 2 for $a=\frac{27}{256}$ and no real roots for $a>\frac{27}{256}$...

Kind regards

$\chi$ $\sigma$


In this case Descartes rule of signs does tell us exactly how many real roots we have.

The number of positive roots is equal to the number of changes of signs of the coefficients less a multiple of 2. In this case the number of sign changes is 1, and as there is no multiple of 2 other than 0 which leaves the number of roots non-negative there is exactly one positive real root. The same argument applies to the negative roots.

CB
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top