(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

When a is odd, show [tex]\frac{a^2-1}{8}[/tex] is an integer. Then prove by induction [tex]n \geq 2[/tex] that for all odd numbers [tex]a_1,a_2,...,a_n,[/tex]

[tex]

\frac{(a_1a_2...a_n)^2 - 1}{8} \equiv \frac{a^2_1 - 1}{8} + \frac{a^2_2 - 1}{8} + ... + \frac{a^2_n - 1}{8} \ mod \ 2

[/tex]

2. Relevant equations

3. The attempt at a solution

I proved that [tex]\frac{a^2-1}{8}[/tex] is an integer for odd a without much difficulty, but I am having trouble even proving the base case, n=2 for this.

From a previous problem, I already proved [tex]\frac{(a_1a_2...a_n) - 1}{2} \equiv \frac{a_1 - 1}{2} + \frac{a_2 - 1}{2} + ... + \frac{a_n - 1}{2} \ mod \ 2[/tex] for odd a. So I thought I might be able to use that and separate it into [tex]\frac{(a_1a_2...a_n) - 1}{2}[/tex] and [tex]\frac{(a_1a_2...a_n) + 1}{4}[/tex] but that didn't get me anywhere. I also tried representing the a's as 2k+1 for an integer k. But I just can't get anywhere.

Also, I figure that if I can prove that the left and right hand sides are both odd or both even, then I am done.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Number Theory with modular arithmetic

**Physics Forums | Science Articles, Homework Help, Discussion**