MHB O(G)=56. Sylow 2 subgroup has all its elements of order 2.

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Elements Subgroup
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $G$ be a group of order $56$ having at least $7$ elements of order $7$.
1) Prove that $G$ has only one Sylow $2$-subgroup $P$.
2) All elements of $P$ have order $2$.

The first part is easy since it follows that the number of Sylow $7$-subgroups is $8$.
I got stuck on part 2. From part 1 we conclude that $P\triangleleft G$. So if $Q$ is any Sylow $7$ subgroup then $G=PQ=QP$. But I am getting nowhere with this. Please help.
 
Physics news on Phys.org
since P is normal we can let any sylow 7-subgroup Q act on it by conjugation.

consider the kernel of this action: it must be a subgroup of Q, which is cyclic of prime order. if the kernel is all of Q, then every element induces the identity map:

qpq-1 = p, for all p in P, and all q in Q.

but this means that PQ = G is abelian (since any two generators for P and Q commute), contradicting the non-normality of Q.

this means that a generator x in Q induces a 7-cycle in P, that is: all non-identity elements of P are conjugate. since conjugates all have the same order, it must be that every element of P has order 2 (since it has at least one element of order 2 by Cauchy's theorem).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top