scott_alexsk said:
Hello,
I just want to clarify something. Why do objects shorten as they travel faster. Is this similar to time dilation except with spatial demensions?
Thanks,
Scott
Well you can ask why endlessy, but I can explain a few things. First of all motion is relative so for an observer on that moving object it is you that is moving and not him. So while you think the object is shortened, he thinks it is you that is shortened and not him.
This seems like a contradiction but it is not. The fact is that you and this observer on the moving object see the entire universe very differently. One of the key differences is that you and he do not interpret the events in the universe as occurring in the same order. For example, suppose you see a star 10 light years in front of you (that is 10 light years in the direction that the object is moving) going nova at the same time as you see a star 10 light years behind you (10 light years in the direction opposite the way the object is moving) also going nova. Since you know that it takes 10 years for light to travel 10 light years distance you know that the two novas occurred at the same time 10 years ago, right? Well the observer on the moving object would not agree. You see from his point of view the two stars are moving. One is moving towards him and the other is moving away from him. So even though he sees the novas at the same time just like you, he knows that the light from the nova of the star coming toward him must have traveled farther than the light from the nova of the star going away from him. This is because even though at present time both stars are equally distant, the star coming toward him was farther away just a short time ago and the star going away from him was closer. Therefore, he concludes that the nova of the star coming toward him happed first before the nova of the star going away from him.
For me it always help keep things straight to put numbers to these things so suppose the object is moving 86.6% of the speed of light. Then according to his calculations the light from the nova of the star coming toward him left that star 37.32 years ago when that star was 37.32 light years away. The light from the nova of the star going away from him left that star 2.68 years ago when that star was only 2.68 light years away. So while you think the two novas occurred at the same time, he thinks that they happened 34.64 years apart. During the 2.68 years that the light from the receding star is traveling towards him the star moves .866 times 2.68 = 2.32 light years farther away so that it is now 2.32 + 2.68 = 5 light years away. During the 37.32 years while the light from the approaching star is traveling towards him, the star moves .866 times 37.32 = 32.32 light years towards him so that it is now 37.32 - 32.32 = 5 light years away.
But wait a minute. For you the two stars were 20 light years apart, while for him the two stars are only 10 light years apart. The fact is that for him, you and the two stars are moving at 86.6% of the speed of light and so you, the two stars and all the spaces in between are all shorter by a factor of two. For you it is the the object which is moving and which is shorter by a half. If there are two more stars which are not moving from his point of view, 20 light years apart, 10 light years away in each direction, then you would see these stars as moving and only 10 light years apart. It seems crazy and contradictory but contradictions are resolved by this fact that you and he do not see events occurring in the same order.
To see this more clearly let's label the first two stars Af and Ar, and label the second two stars Bf and Br. Then you see this,
Ar...(5 ly)...Br->...(5 ly)...you...(5 ly)...Bf->...(5 ly)...Af
while he sees this,
Br...(5 ly)...<-Ar...(5 ly)...him...(5 ly)...<-Af...(5 ly)...Bf
This is possible because, while for you Br has already passed Ar, for him this has not happened yet, and while for him Af has already passed Bf, for you this has not happened yet. All the events which have already happened to your rear (Br passing Ar and Ar going nova), for him have happened more recently (Ar going nova) or haven't even happened yet (Br passing Ar). All the events to your front, one of which has not happened yet, have already happened (Af passing Bf) or happened long ago (Af going nova). So in sense you could say that the observer on the "moving" object sees to the rear what you would call your past and he sees to the front what you would call your future. In fact as he looks at you, your front side is slightly in the future compared to your rear side, and during that time difference your front side has traveled closer to your rear side, and so he calculates you to be shorter from front to rear.
This is not what he sees, because that is subject to a further distortion due to the fact the light which he sees you by takes time to travel to his eye. The light from your farther side has to travel a little farther than the light from your closer side and at 86.6% of the speed of light, you move a significant amount during that time. The result is that when you are in front of him moving toward him you actually appear elongated and it is only when you are behind him traveling away from him that you appear shorter (even shorter than half).