Obtaining recurrence relation from a given sequence

mnb96
Messages
711
Reaction score
5
Hello,

it is known that given a certain recurrence relation that describes a sequence of numbers, it is often possible to obtain a function f[n] that directly yields the n-th number of the sequence. This is usually accomplished by using powerful techniques involving generating functions or the Z-transform (see for instance this thread).

My question is: are there equally powerful techniques that allow one to do the reverse, i.e. given the closed-form f[n] of a sequence, obtain one possible recurrence relation that describes the same sequence (even approximately)?

I am mot sure this is the right forum, but at least I see an analogy between Laplace transform and Z-transform and between the above problem and its continuous analog, i.e. given a certain function f(x), find a differential equation for which f is a solution.
 
Physics news on Phys.org
I'm sorry you are not finding help at the moment. Is there any additional information you can share with us?
 
mnb96 said:
Hello,

it is known that given a certain recurrence relation that describes a sequence of numbers, it is often possible to obtain a function f[n] that directly yields the n-th number of the sequence. This is usually accomplished by using powerful techniques involving generating functions or the Z-transform (see for instance this thread).

My question is: are there equally powerful techniques that allow one to do the reverse, i.e. given the closed-form f[n] of a sequence, obtain one possible recurrence relation that describes the same sequence (even approximately)?

Trivially, if x_n = f(n), then x_{n+1} = x_n + f(n+1) - f(n) is one such recurrence relation.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top