Understanding Integrals and the Importance of Constants

Click For Summary
The discussion centers on solving a differential equation related to an RC series circuit with a variable resistor, specifically addressing whether capacitance (C) can be treated as a constant. Participants agree that capacitance is indeed a constant based on the physical properties of the capacitor. There is a debate about the proper treatment of the variable t in integrals, emphasizing that t within the integral should not be arbitrarily set to zero. The importance of correctly simplifying expressions and the implications for integration are highlighted, leading to a realization of gaps in understanding basic integration concepts. Overall, the conversation underscores the significance of constants in differential equations and proper integration techniques.
keyermoond
Messages
3
Reaction score
0

Homework Statement


Suppose an RC series circuit has a variable resistor. If the resistance at time t is given by by R = a + bt, where a and b are known positive constants then the charge q(t) on the capacitor satisfies

(a+bt) q' + (1/C)q = V

where V is some constant. Also q(0) = q_0
Find q(t) as an explicit function of t.

Homework Equations



Now I have obtained the answer, however my main question is: am I allowed to treat C (capacitance) as a constant in this equation. It doesn't specify in the question, but to my knowledge (unless I am wrong of course) capacitance is a constant value and only depends on material and physical parameters of the capacitor itself (how it is build).

If I can't treat C as a constant then I believe there is no way to evaluate the integral in integrating factor and I'd have to leave it as it is.

Process is simple from there, I rewrite the equation in standart form, find the integrating factor and obtain a formula for q(t), evaluate an integration constant with q(0) = q_0 and obtain the overall solution q(t).

The answer looks quite frightening btw

3. My solution:
attached pdf file
 

Attachments

Physics news on Phys.org
The capacitance must be constant during the all process, which just depends on its material and geometric shape, as what you say above,
 
  • Like
Likes keyermoond
Is there some reason you're not simplifying ##\frac{(a+bt)^k}{a+bt}## to ##(a+bt)^{k-1}## and integrating the righthand side? Also, the ##t## in the integral is a dummy variable, so it's not correct to set it to 0.
 
  • Like
Likes keyermoond
That's what my prof does. By setting it from 0 to t, we ensure evaluated integral is equal to the true value with t as a variable, how would setting it to something arbitary as t_o (I'm assuming that's what you mean)be any better? My understanding of it is that we need to choose some "convenient" interval, what's wrong with 0 to t?

And thank you for pointing out I can actually simplify it further, I completely missed that.
 
keyermoond said:
That's what my prof does. By setting it from 0 to t, we ensure evaluated integral is equal to the true value with t as a variable, how would setting it to something arbitary as t_o (I'm assuming that's what you mean)be any better? My understanding of it is that we need to choose some "convenient" interval, what's wrong with 0 to t?
What I'm saying is you can't do something like this:
$$\int (a+bt)^2\,dt = \int a\,dt$$ by claiming you're setting ##t=0##. The ##t## inside the integral isn't the same ##t## that appears elsewhere.
 
  • Like
Likes keyermoond
vela said:
What I'm saying is you can't do something like this:
$$\int (a+bt)^2\,dt = \int a\,dt$$ by claiming you're setting ##t=0##. The ##t## inside the integral isn't the same ##t## that appears elsewhere.
I see what you mean, my mistake, thank you for pointing it out. I see holes in my knowledge about understanding of basic integration now, will have to fill them in :)
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K