Ohm's Law graphing inversed gradient value

AI Thread Summary
Ohm's Law states that the relationship between voltage and current in an ohmic device is linear, with the gradient representing resistance. When plotting current (I) against voltage (V), the equation I = mV + c shows that the slope (m) is the current per unit voltage. To find the resistance, the gradient must be inverted, as resistance is defined as voltage divided by current (R = V/I). The discussion emphasizes the importance of correctly identifying the axes in the graph to accurately interpret the gradient. Understanding this relationship is crucial for correctly applying Ohm's Law in practical scenarios.
Casius
Messages
2
Reaction score
0
Homework Statement
Hey all. This is about Ohm's Law (and specifically resistance). When you plot the change in current vs the change in voltage you should get a linear trend line (providing it is from an ohmic device). The gradient should be the resistance. My questions is why does the gradient value need to be inversed to find the true resistance value?
Relevant Equations
y = mx +c
Hey all. This is about Ohm's Law (and specifically resistance). When you plot the change in current vs the change in voltage you should get a linear trend line (providing it is from an ohmic device). The gradient should be the resistance. My questions is why does the gradient value need to be inversed to find the true resistance value?
 
Physics news on Phys.org
Casius said:
Homework Statement:: Hey all. This is about Ohm's Law (and specifically resistance). When you plot the change in current vs the change in voltage you should get a linear trend line (providing it is from an ohmic device). The gradient should be the resistance. My questions is why does the gradient value need to be inversed to find the true resistance value?
Relevant Equations:: y = mx +c
Of voltage and current, which are you plotting as y and which as x?
 
haruspex said:
Of voltage and current, which are you plotting as y and which as x?
Voltage x, current y
 
Casius said:
Voltage x, current y
So you have I=mV+c.
What would m be there?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top