I Optical spectrum analyzer related

chisuma
Messages
2
Reaction score
0
TL;DR Summary
Can anyone explain why optical spectrum analyzer plots are in negative dB
Can anyone explain why optical spectrum analyzer plots are in negative dB
 
Physics news on Phys.org
chisuma said:
Summary:: Can anyone explain why optical spectrum analyzer plots are in negative dB

Can anyone explain why optical spectrum analyzer plots are in negative dB
Welcome to PhysicsForums.

What optical power would correspond to 0dB? :wink:

Also, which optical spectrum analyzer are you using, and are you using it to measure attenuation in optical fiber?
 
Thanks Berkeman. Appreciate your response. 0 db translates to 1 mW of power. We are using Yokogawa spectrum analyzer. We are measuring power out of the fiber. Please correct me if I am wrong - I think attenuation in the fiber can be calculated by the delta in power between free space power and power out of fiber. Regarding my question as to why there are negative values in OSA spectrum, is it a relative measurement with respect to 1mW power (0 dB).
 
Often (but not always), you'll see dB with respect to 1mW written as units of dBm instead of dB. Its only a valid unit for absolute power. If you're not sure if the dB your spectrum analyzer reports are with respect to 1mW, check if the units say "dBm". If they just say "dB", you may want to test the spectrum analyzer with a signal of known power (like a visual fault indicator, the laser pointer thingy for aligning fibers). Check the signal against a power meter and the spectrum analyzer. (Note: lots of people don't distinguish between dB and dBm so just because your y-axis doesn't say dBm doesn't mean its not with respect to 1mW.)
And yes, the attenuation is typically given as the difference in input and output power on a dB scale (not a linear scale!) divided by the length of the fiber in km.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top