MHB Optimizing Triangle Area on a Circle: Finding the Minimum with Tangents

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Circles
AI Thread Summary
Tangents are drawn from a point A on the x-axis to the circle defined by x²+y²=32, with points B and C where the tangents intersect the y-axis. The area of triangle ABC is expressed as a function of k, the x-coordinate of point A, leading to the formula a(k) = (4√2k²)/(√(k²-32)). To find the minimum area, the derivative of a(k) is calculated and set to zero, resulting in k values of ±8. The minimum area occurs at the points (8,0) and (-8,0).
DrunkenOldFool
Messages
20
Reaction score
0
Tangents are drawn to the circle $x^2+y^2=32$ from a point $A$ lying on the x-axis. The tangents cut the y-axis at a point $B$ and $C$, then find the coordinate(s) of $A$ such that the area of $\Delta ABC$ is minimum.
 
Mathematics news on Phys.org
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.
 
Last edited:
sbhatnagar said:
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.

Thank You!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top