MHB Optimizing Triangle Area on a Circle: Finding the Minimum with Tangents

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Circles
DrunkenOldFool
Messages
20
Reaction score
0
Tangents are drawn to the circle $x^2+y^2=32$ from a point $A$ lying on the x-axis. The tangents cut the y-axis at a point $B$ and $C$, then find the coordinate(s) of $A$ such that the area of $\Delta ABC$ is minimum.
 
Mathematics news on Phys.org
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.
 
Last edited:
sbhatnagar said:
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.

Thank You!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top