1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Origin of Vector Cross Product

  1. Mar 15, 2010 #1
    I understand the cross product of vectors to some degree and i can calculate. But i don't really understand the origin of the cross product

    What does a vector cross product mean in physical terms. Vector addition is quite easy to understand. I don't think the cross product is 'multiplication of vectors' as multiplication can be broken down into a series of additions at least for scalars.

    Is the cross product simply a definition such that the product of 2 different components of a 2 vectors result in a multiplication of the magnitude in a direction perpendicular to the plane of the original vector components?

    I don't really understand this in physical terms. All the books i have read have explained it in the above way.
  2. jcsd
  3. Mar 15, 2010 #2


    User Avatar
    Science Advisor

    The vector cross product, as well as the dot product and other vector manipulations, are all mathematical concepts. What do have in mind for "physical terms".
  4. Mar 15, 2010 #3

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    The origin of the vector cross product is the quaternion product. There was a minor skirmish in the field of mathematics at the end of the 19th century between the "quaternionists" (Hamilton et al) and the "vectorialists" (Gibbs, Heaviside, et al). Hamilton's quaternions were elegant, but maybe a bit too complex for everyday use -- and they did not quite fit into our three dimensional universe. Vectors are not quite as mathematically elegant, but they are simpler, and at least on the surface, they fit our 3D universe to a T.
  5. Mar 15, 2010 #4
    Sometimes, yes, that is precisely the way it's defined. In others, we just define it using the vector notation. There are many more ways to define it. In 3 dimensions, I'm pretty sure most of them are equal, at least for most vectors.

    That's not entirely true. It was studied as a useful geometric construct much earlier. You have to remember that geometry is very old, and quaternions are a relatively recent concept.

    In the end, what's important is not where it came from but the fact that it stuck around, mainly because it's so useful.
  6. Mar 25, 2010 #5
    How is it the cross product so much useful in "electrodynamics" was discovered before it.
    Is it a mere coincidence that laws of electrodynamics can so easily be expressed using the cross product
  7. Mar 25, 2010 #6

    Char. Limit

    User Avatar
    Gold Member

    Nothing is coincidence...

    Torque also uses cross product.

    [tex]\vec{T}=\vec{F} \times \vec{r}[/tex]
  8. Mar 29, 2010 #7
    Torque is:

    [tex]\vec{T}=\vec{r} \times \vec{F}[/tex]

    Cross product is noncommutative.
  9. Mar 29, 2010 #8

    Char. Limit

    User Avatar
    Gold Member


    Thanks, I've always read it as T=Fr for perpendicular forces and radii, and never knew that it was different.
  10. Mar 29, 2010 #9
    If I remember anything from my multivariable calc, it can be expressed as [tex]\vec{T}=-\vec{F} \times \vec{r}[/tex] if you would like. I've usually seen it in r cross F though.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Origin of Vector Cross Product