MHB Orthonormal basis for the poynomials of degree maximum 2

AI Thread Summary
The discussion focuses on calculating an orthonormal basis for polynomials of degree up to 2 using the inner product defined by the integral of the product of functions weighted by \(1 - x^2\). The user initially applied the Gram-Schmidt algorithm but made an error in calculating the norm, mistakenly equating it to the inner product instead of its square root. After receiving clarification, the user acknowledged the mistake and successfully obtained the correct results. The conversation highlights the importance of accurate calculations in the Gram-Schmidt process for achieving orthonormality. Overall, the thread emphasizes the significance of proper mathematical procedures in polynomial orthonormalization.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

We consider the inner product $$\langle f,g\rangle:=\int_{-1}^1(1-x^2)f(x)g(x)\, dx$$ Calculate an orthonormal basis for the poynomials of degree maximum $2$.

I have applied the Gram-Schmidt algorithm as follows:

\begin{align*}\tilde{q}_1:=&1 \\ q_1:=&\frac{\tilde{q}_1}{\|\tilde{q}_1\|}=\frac{1}{\langle \tilde{q}_1, \tilde{q}_1\rangle}=\frac{1}{\int_{-1}^1(1-x^2)\cdot 1\cdot 1\, dx}=\frac{1}{\int_{-1}^1(1-x^2)\, dx}=\frac{1}{\left [x-\frac{x^3}{3}\right]_{-1}^1}=\frac{1}{\left [1-\frac{1^3}{3}\right]-\left [(-1)-\frac{(-1)^3}{3}\right ]}\\ =&\frac{1}{1-\frac{1}{3}+1-\frac{1}{3}}=\frac{1}{2-\frac{2}{3}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\end{align*}

\begin{align*}\tilde{q}_2:=&x-\langle x, q_1\rangle q_1=x-\left (\int_{-1}^1(1-x^2)\cdot x\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}=x-\frac{3}{4}\cdot \left (\int_{-1}^1(x-x^3)\, dx\right )\cdot \frac{3}{4}=x-\frac{9}{16}\cdot \left [\frac{x^2}{2}-\frac{x^4}{4}\right ]_{-1}^1 \\ = & x-\frac{9}{16}\cdot 0=x\\ q_2:=&\frac{\tilde{q}_2}{\|\tilde{q}_2\|}=\frac{x}{\langle \tilde{q}_2, \tilde{q}_2\rangle}=\frac{x}{\int_{-1}^1(1-x^2)\cdot x\cdot x\, dx}=\frac{x}{\int_{-1}^1(x^2-x^4)\, dx}=\frac{x}{\left [\frac{x^3}{3}-\frac{x^5}{5}\right]_{-1}^1}=\frac{x}{\left [\frac{1}{3}-\frac{1}{5}\right]-\left [-\frac{1}{3}+\frac{1}{5}\right ]}\\ =&\frac{x}{\frac{1}{3}-\frac{1}{5}+\frac{1}{3}-\frac{1}{5}}=\frac{x}{\frac{2}{3}-\frac{2}{5}}=\frac{x}{\frac{4}{15}}=\frac{15x}{4}\end{align*}

\begin{align*}\tilde{q}_3:=&x^2-\langle x^2, q_1\rangle q_1-\langle x^2, q_2\rangle q_2=x^2-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{15x}{4}\, dx\right )\cdot \frac{15x}{4}\\ =&x^2-\frac{9}{16}\cdot \int_{-1}^1(x^2-x^4)\, dx-\frac{225x}{16}\cdot \int_{-1}^1(x^3-x^5)\, dx =x^2-\frac{9}{16}\cdot \frac{4}{15}-\frac{225x}{16}\cdot 0=x^2-\frac{3}{20}\\ q_3:=&\frac{\tilde{q}_3}{\|\tilde{q}_3\|}=\frac{x^2-\frac{3}{20}}{\langle \tilde{q}_3, \tilde{q}_3\rangle}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1(1-x^2)\cdot \left (x^2-\frac{3}{20}\right )\cdot \left (x^2-\frac{3}{20}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1\left (-x^6+\frac{13x^4}{10}-\frac{129x^2}{400}+\frac{9}{400}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\frac{9}{140}}\\ =&\frac{140}{9}\left (x^2-\frac{3}{20}\right )\end{align*} I wanted to check if I have the correct answers and I noticed (if I am not mistaken) that the polynomials that I found are not orthonormal in respect to the other terms. Have I applied a wrong formula? :unsure:
 
Mathematics news on Phys.org
Hey mathmari!

I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? šŸ¤”
 
Klaas van Aarsen said:
I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? šŸ¤”

Oh yes, you 're right! Now I get the correct result! :giggle:
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a ā€œconvenient notationā€ he referred to as a ā€œdelta functionā€ which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top