Oscillating charges in an electric field

Click For Summary
SUMMARY

The discussion focuses on calculating the oscillation frequency of a test charge in the presence of two fixed charges along the x-axis. The relevant equations include Coulomb's law, represented as Fe = kqQ/r2, and the harmonic oscillation formula F = -Kx. Participants clarify that the force constant K must be derived from the specific configuration of the charges, emphasizing the need to simplify expressions while considering small displacements. The final expression for the force constant is determined to be K1 = (4qqtestk2)/a3.

PREREQUISITES
  • Coulomb's Law for electric forces
  • Concept of Simple Harmonic Motion (SHM)
  • Understanding of electric fields and their calculations
  • Basic algebra for simplifying expressions
NEXT STEPS
  • Study the derivation of electric field expressions for point charges
  • Learn about the relationship between force constants and oscillation frequency
  • Explore the concept of small-angle approximation in harmonic motion
  • Investigate the effects of multiple charges on oscillatory motion
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of charged particles in electric fields, particularly in the context of harmonic motion.

WrongMan
Messages
149
Reaction score
15
I don't have a single problem, my teachers use this a lot.
a few examples, are an uniformely charged circle and a point charge in the middle, where if you move the point charge a small distance perpendicular to the circle, it would begin to oscilate, and i need to find the frequency of oscilation.
or, just a couple of point charges on the x-axis at a certain distance to the origin, and you place an oposite charge on the origin and move it a small amount on the y axis, what would be the frequency of oscilation, or find an expression for the position of the oscilating charge.

equations i think would be relevant are electric force and harmonic oscilation:
Fe = kqQ/r^2 and F=-Kx
Would the answer be just to substitute the forces for each other and have
kqQ/r^2 = -Kx
Or do i have to find K for each specific situation?
these are "old" problems as in I'm not studying this part of the program anymore, Electric fields and forces are going to be in the final, and I am pretty sure a problem like this is going to show up.
I haven't tried to solve the exercises since i don't have the answers i have no idea to check if I am correct other than criticizing my results
Im sorry I'm not showing any real attempt at solving these, i just need a little push in the right direction on how do i have to think about this?
 
Physics news on Phys.org
WrongMan said:
are an uniformely charged circle and a point charge in the middle, where if you move the point charge a small distance perpendicular to the circle, it would begin to oscilate, and i need to find the frequency of oscilation.
You need to first find a general expression for electric field E(x) on the axis, at a distance x from the center of the ring. Then, using F(x)=q*E(x), you can get the force on the charge. For simple harmonic motion, the displacement 'x' of the charge should be small enough compared to the radius 'r' of the ring, such that F=kx. Hence, assuming x<<r in the expression for F(x), you'll get the expression for force of SHM in the form of F=kx.
 
Last edited:
  • Like
Likes   Reactions: WrongMan
cnh1995 said:
You need to first find a general expression for electric field E(x) on the axis, at a distance x from the center of the ring. Then, using F(x)=q*E(x), you can get the force on the charge. For simple harmonic motion, the displacement 'x' of the charge should be small enough compared to the radius 'r' of the ring, such that F=kx. Hence, assuming x<<r in the expression for F(x), you'll get the expression for force of SHM in the form of F=kx.
Ok great that's what i had in mind. thanks!
 
Ok so i returned to this today.
The exercise i looked at was the following:
there are two charges (q>0) positioned at (+a,0) and (-a,0)
another test charge (same signal) is placed at the origin, and can only move along the x axis, find the oscillation frequency when you give it a small displacement along the x axis.

So i found the field expression for both original charges. zeroed the y component and got
for the charge at -a:
E=kq*(1/(x+a)^2) * (x+a)/((x+a)^2)^1/2
for the one at +a
E=kq*(1/(x-a)^2) * (x-a)/((x-a)^2)^1/2

Found the resulting force on the test charge that was displaced dx
Ft=kqqtest*(1/(dx+a)^2 - 1/(dx-a)^2)
then i use this force to replace in "F=-kdx".
solve for k, then since (k/m)^1/2 = 2pi/T, solve for T then T = 1/f solve for f.
is this correct?
 
Last edited:
WrongMan said:
there are two charges (q>0) positiones at (+a,0) and (-a,0)
If both the charges have same sign, y compoment of the field is not 0.
 
  • Like
Likes   Reactions: WrongMan
cnh1995 said:
If both the charges have same sign, y compoment of the field is not 0.
yes, they have the same charge and are positioned along the x axis, so on the x-axis the field in the y direction is 0 (even if they had opposite charges it would be 0).

I'm considering only the X-axis on this part of the problem i meant that previously i found the field at any position on the XY plane, got:
E=kq*(1/((x+a)^2+y^2) * (x+a,y)/((x+a)^2+y^2)^1/2
for the one at +a
E=kq*(1/((x-a)^2+y^2) * (x-a,y)/((x-a)^2+y^2)^1/2

but since for this part of the problem the test charge in only in the x axis, i zeroed the y's in those expressions, that's what i meant.
 
WrongMan said:
so on the x-axis the field in the y directions is 0 (even if they had opposite charges it would be 0)
Oh..I think I misread your question. On the x axis, the y component of the field is zero but elsewhere, it is non-zero. It would be true for opoosite charges as well. I pictured that the test charge is displaced along y-axis and got confused.
 
  • Like
Likes   Reactions: WrongMan
WrongMan said:
Found the resulting force on the test charge that was displaced dx
Ft=kqqtest*(1/(dx+a)^2 - 1/(dx-a)^2)
then i use this force to replace in "F=-kdx".
solve for k, then since (k/m)^1/2 = 2pi/T, solve for T then T = 1/f solve for f.
is this correct?
Ft is not proportional to dx. What do you mean with replacing F in F=-kdx with it? Show how do you solve for k, please.
 
  • Like
Likes   Reactions: WrongMan
ehild said:
Ft is not proportional to dx. What do you mean with replacing F in F=-kdx with it? Show how do you solve for k, please.
what? how is it not proportional? Ft must be proportional to dx, it makes sense that as dx aproaches (a,0), force on the test charge by the charge in (a,0) goes to infinity, and the force on the test charge by the charge on (-a,0) goes to force at a distance of 2a.

-(k/dx)*qqtest*(1/(dx+a)^2 - 1/(dx-a)^2)=k
the minus makes sense since i moved the charge a positive dx, the force would have "-x direction"
this and the rest is just substitution.
Am i wrong?
 
  • #10
WrongMan said:
what? how is it not proportional? Ft must be proportional to dx, it makes sense that as dx aproaches (a,0), force on the test charge by the charge in (a,0) goes to infinity, and the force on the test charge by the charge on (-a,0) goes to force at a distance of 2a.
That does not mean a force proportional to dx.
WrongMan said:
-(k/dx)*qqtest*(1/(dx+a)^2 - 1/(dx-a)^2)=k
the minus makes sense since i moved the charge a positive dx, the force would have "-x direction"
this and the rest is just substitution.
Am i wrong?
Yes.
First: you use the symbol k for two different things, the constant in Coulomb's law, and the force constant in F=-kx. k just cancels from the equation you presented.
What do you get for the force constant from your equation?
 
  • Like
Likes   Reactions: WrongMan
  • #11
ehild said:
That does not mean a force proportional to dx.

Yes.
First: you use the symbol k for two different things, the constant in Coulomb's law, and the force constant in F=-kx. k just cancels from the equation you presented.
What do you get for the force constant from your equation?

oh ok i get it, i was saying it was proportional as in Ft varies when dx changes not direct or inverse proportionality.

oh yeas i didnt notice i used the same letter for two different things.
the force constant would be:
k1= -(k2/dx)*qqtest*(1/(dx+a)^2 - 1/(dx-a)^2)

where k1 is the force constant and k2 is the constant in coulomb law
 
  • #12
WrongMan said:
the force constant would be:
k1= -(k2/dx)*qqtest*(1/(dx+a)^2 - 1/(dx-a)^2)

where k1 is the force constant and k2 is the constant in coulomb law
Yes, but the force constant should be a constant. Yours depends on dx. You have to simplify the expression for k1 and use that dx<<a.
Hint: bring the terms of 1/(dx+a)^2 - 1/(dx-a)^2 to common denominator, expand the squares and simplify, ignore terms with dx on power higher than 1.
 
  • Like
Likes   Reactions: WrongMan
  • #13
ehild said:
Yes, but the force constant should be a constant. Yours depends on dx. You have to simplify the expression for k1 and use that dx<<a.
Hint: bring the terms of 1/(dx+a)^2 - 1/(dx-a)^2 to common denominator, expand the squares and simplify, ignore terms with dx on power higher than 1.

yeah makes sense, i got
K1=(4qqtestk2)/a3
 

Similar threads

Replies
12
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
Replies
3
Views
950
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K