Oscillation Problem: Find Period and Potential Energy

Click For Summary
The discussion focuses on determining the short oscillation period and potential energy of a mass "m" subjected to an external force described by Fx=-4*sin(3*pi*x). The user approximates the force for small oscillations, leading to the conclusion that the angular frequency ω is 12*pi/m, resulting in a period T of 2*pi*√(m/(12*pi)). The potential energy is derived as Ep=6*pi*x^2, assuming a spring-like behavior. However, there is a suggestion that the potential energy should correspond to the original force rather than the approximation, leading to a revised expression for potential energy as Ep=2*sin(3*pi*x)*x. The conversation also touches on the relationship between force, potential energy, and kinetic energy.
Misheel
Messages
6
Reaction score
0

Homework Statement


mass "m" object is located near the origin of the coordinate system. External force was exerted on the object depending on the coordinate by the formula of Fx=-4*sin(3*pi*x). Find the short oscillation period, and the potential energy depending on the coordinate.

Homework Equations


F=ma

The Attempt at a Solution


I am not really sure what is the short oscillation period... but
since there is only 1 force:
F=Fx=ma
-4sin(3*pi*x)=m*(d^2*x)/dt^2

and assuming that the object will move very little (because it's said to be SHORT osccilation period ?)
sin(3*pi*x) is approximately 3*pi*x .
and since
2*x=(d^2*x)/dt^2 is the formula of the harmonic oscillation :
we find ω=12*pi/m
and the T=2*pi*√(m/(12*pi)) ?

and also assuming that in SHORT oscillation :
it is almost like a spring :
F=-12*pi*x=-kx
k=12*pi

potential energy is Ep= k*x^2/2=6*pi*x^2 ?
 
Physics news on Phys.org
Misheel said:

Homework Statement


mass "m" object is located near the origin of the coordinate system. External force was exerted on the object depending on the coordinate by the formula of Fx=-4*sin(3*pi*x). Find the short oscillation period, and the potential energy depending on the coordinate.

Homework Equations


F=ma

The Attempt at a Solution


I am not really sure what is the short oscillation period... but
since there is only 1 force:
F=Fx=ma
-4sin(3*pi*x)=m*(d^2*x)/dt^2

and assuming that the object will move very little (because it's said to be SHORT osccilation period ?)
sin(3*pi*x) is approximately 3*pi*x .
and since
2*x=(d^2*x)/dt^2 is the formula of the harmonic oscillation :
we find ω=12*pi/m
and the T=2*pi*√(m/(12*pi)) ?
This is fine.

and also assuming that in SHORT oscillation :
it is almost like a spring :
F=-12*pi*x=-kx
k=12*pi

potential energy is Ep= k*x^2/2=6*pi*x^2 ?
I think the problem is looking for the potential corresponding to the original force, not the approximation.
 
Thank You for your reply, Vela

umm...then, i have no other ideas other than using FORCE to solve this problem :PP which is :
F=-kx
Fx=F=-4*sin(3*pi*x)=-kx from this
we find k=4*sin(3*pi*x)/x
so Ep=kx^2/2=2*sin(3*pi*x)*x ?

is it right ? :P

Thanks
 
How are potential energy and force related in general?
 
vela said:
How are potential energy and force related in general?

Maybe the work done by force is divided into object's konetik and potential energy ?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
13
Views
2K
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
2
Views
907
Replies
31
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K