A question arose to me while reading the first chapter of Sakurai's Modern Quantum Mechanics. Given a Hilbert space, is the outer product [itex] \mathcal{H}\times \mathcal{H}^\ast \to End(\mathcal{H}); (| \alpha\rangle,\langle \beta|)\mapsto | \alpha\rangle\langle \beta|[/itex] a surjection? Ie, can any linear self-map of H be formed by tacking together a suitable ket and bra?(adsbygoogle = window.adsbygoogle || []).push({});

After thinking about this a bit longer I realise the answer is no. If we think about a n-dimensional Hilbert space (n < oo), then the outer product operation corresponds to matrix multiplication of a column vector with a row vector. Clearly not all n x n matrices can be formed in this way. I'm not sure quite how many matrices you can cover in this manner, however.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Outer product in Hilbert space

**Physics Forums | Science Articles, Homework Help, Discussion**