MHB Owen b's question at Yahoo Answers regarding a first order homogenous ODE

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    First order Ode
Click For Summary
The discussion focuses on solving the first-order homogeneous ordinary differential equation (ODE) given by dy/dt = t^3/y^3 + y/t. The approach involves recognizing it as a Bernoulli equation and applying the substitution u = y/t, which simplifies the equation. After substituting, the ODE is transformed into a separable form, allowing for integration. The integration leads to an implicit solution expressed as y^4 = t^4(ln(t^4) + C). This method effectively demonstrates the process of solving the given ODE.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to solve this equation? dy/dt= t^3/y^3 + y/t?


How to solve this equation? dy/dt= t^3/y^3 + y/t

what i understand is we have to use Bernoulli and then solve it using linear equation,is it?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello owen b,

We are given to solve:

$$\frac{dy}{dt}=\frac{t^3}{y^3}+\frac{y}{t}$$

I would first express the ODE as:

$$\frac{dy}{dt}=\left(\frac{y}{t} \right)^{-3}+\frac{y}{t}$$

Now, use the substitution:

$$u=\frac{y}{t}\implies y=ut\implies\frac{dy}{dt}=u+\frac{du}{dt}t$$

And our ODE become:

$$u+\frac{du}{dt}t=u^{-3}+u$$

$$\frac{du}{dt}t=u^{-3}$$

Separating variables and integrating (noting $t\ne0$), we obtain:

$$\int u^3\,du=\int\frac{dt}{t}$$

$$\frac{u^4}{4}=\ln|t|+C$$

$$u^4=\ln\left(t^4 \right)+C$$

Back-substituting for $u$, we obtain the implicit solution:

$$y^4=t^4\left(\ln\left(t^4 \right)+C \right)$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K