MHB Panda Bear's question at Yahoo Answers regarding solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
The discussion revolves around calculating the volume of a solid formed by revolving the region defined by the curve y = √(1-x), the lines x = -3, x = 1, and y = 1. The volume is computed using both the disk and shell methods, leading to the same result of V = 4π/3. The disk method involves integrating the function for the radius squared, while the shell method calculates the volume of cylindrical shells. Detailed calculations are provided for both methods, confirming the accuracy of the final volume. The thread effectively demonstrates the application of calculus techniques to solve the problem.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Need calculus help Volumes using Disks/Washers?

find the volume of the solid that is obtained by revolving the region about the indicated axis or line
y=square root of (1-x )
x= -3, 1 y=1

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Panda Bear,

First, let's take a look at the region to be revolved:

View attachment 1100

Using the disk method, we see we will have two regions to revolve, the region on the left and the region on the right. However, since the radius is to be squared, and the radius on the right is the negative of the radius on the right, we may simply use one integral.

The volume of an arbitrary disk is:

$$dV=\pi r^2\,dx$$

where:

$$r=\pm\left(\sqrt{1-x}-1 \right)$$

and so we have:

$$dV=\pi\left(\sqrt{1-x}-1 \right)r^2\,dx=\pi\left(2-x-2\sqrt{1-x} \right)\,dx$$

Summing the disks by integrating, we have:

$$V=\pi\int_{-3}^1 2-x-2\sqrt{1-x}\,dx$$

For the third term in the integrand, let's use the substitution:

$$u=1-x\,\therefore\,du=-dx$$ and we have:

$$V=\pi\int_{-3}^1 2-x\,dx-2\pi\int_0^4u^{\frac{1}{2}}\,du$$

Applying the anti-derivative form of the FTOC, we find:

$$V=\pi\left(\left[2x-\frac{1}{2}x^2 \right]_{-3}^1-\frac{4}{3}\left[u^{\frac{3}{2}} \right]_0^4 \right)=$$

$$\pi\left(\left(\left(2(1)-\frac{1}{2}(1)^2 \right)-\left(2(-3)-\frac{1}{2}(-3)^2 \right) \right)-\frac{4}{3}\left(\left(4^{\frac{3}{2}} \right)-\left(0^{\frac{3}{2}} \right) \right) \right)=$$

$$\pi\left(12-\frac{32}{3} \right)=\frac{4\pi}{3}$$

We can check our work using the shell method. For the area on the left, we have:

The volume of an arbitrary shell is:

$$dV_1=2\pi rh\,dy$$

where:

$$r=y-1$$

$$h=\left(1-y^2 \right)-(-3)=4-y^2$$

and so we have:

$$dV_1=2\pi(y-1)\left(4-y^2 \right)\,dy=2\pi\left(-y^3+y^2+4y-4 \right)\,dy$$

Summing the shells, we find:

$$V_1=2\pi\int_1^2 -y^3+y^2+4y-4\,dy=2\pi\left[-\frac{1}{4}y^4+\frac{1}{3}y^3+2y^2-4y \right]_1^2=$$

$$2\pi\left(\left(-\frac{1}{4}(2)^4+\frac{1}{3}(2)^3+2(2)^2-4(2) \right)-\left(-\frac{1}{4}(1)^4+\frac{1}{3}(1)^3+2(1)^2-4(1) \right) \right)=$$

$$2\pi\left(\left(-4+\frac{8}{3}+8-8 \right)-\left(-\frac{1}{4}+\frac{1}{3}+2-4 \right) \right)=$$

$$2\pi\left(-\frac{4}{3}+\frac{23}{12} \right)=\frac{7\pi}{6}$$

Now, for the area on the right, we find the volume of an arbitrary shell is:

$$dV_2=2\pi rh\,dy$$

where:

$$r=1-y$$

$$h=1-\left(1-y^2 \right)=y^2$$

Hence:

$$dV_2=2\pi (1-y)\left(y^2 \right)\,dy=2\pi\left(y^2-y^3 \right)\,dy$$

Summing the shells, we find:

$$V_2=2\pi\int_0^1 y^2-y^3\,dy=2\pi\left[\frac{1}{3}y^3-\frac{1}{4}y^4 \right]_0^1=2\pi\left(\frac{1}{3}-\frac{1}{4} \right)=\frac{\pi}{6}$$

Adding the two volumes, we find the total is:

$$V=V_1+V_2=\frac{7\pi}{6}+\frac{\pi}{6}=\frac{4\pi}{3}$$
 

Attachments

  • pandabear.jpg
    pandabear.jpg
    6.6 KB · Views: 94