anuttarasammyak
Gold Member
- 2,922
- 1,515
Integration with weightanuttarasammyak said:1. lower energy particle which does not touch the ceiling at height h.
maximum height
v022g<h
time to reach maximum
T=v0g
<z>=1T∫0Tz(t)dt
=v023g
f(v_0)=\sqrt{\frac{m\beta}{2\pi}}e^{-\frac{m\beta}{2}v_0^2}
is rather easier. Contribution of the balls which do not reach the ceiling to <z> is
2 \int_0^\sqrt{2gh} dv_0 \frac{v_0^2}{3g} \sqrt{\frac{m\beta}{2\pi}}e^{-\frac{m\beta}{2}v_0^2}
=\frac{2}{3\sqrt{\pi}}\frac{1}{m\beta g}\int_0^{m\beta gh}\sqrt{t}e^{-t} dt
=h\frac{2}{3\sqrt{\pi}}\frac{1}{m\beta gh} (\frac{\sqrt{\pi}}{2}-\Gamma(\frac{3}{2},m\beta gh))
ref. https://www.wolframalpha.com/input?i=2/(3sqrt(pi))(integration+of+√xe^(-x)+from+0+to++x)divided+by+x
I observe in both high and low tenperature limit, the contribution tends to zero. It has a peak of about 0.15 h around ##mg\beta h=1##.
Last edited: