Examples:
Continuous P, specific parameters: Let U[0,1] be the uniform prob. dist. over the unit interval I=[0,1]: U[0,1](v) = v for v in I. Then E[U[0,1]] = EU[0,1][I] = \int_0^1 v dU[0,1](v) = \int_0^1 v dv = \frac{v^2}{2}|_0^1 = 1/2.
Continuous P, general parameters: Let U[a,b] be the uniform prob. dist. over any interval J = [a,b]: U[a,b](v) = (v-a)/(b-a) for v in J. Then
<br />
E[U[a,b]] = E_{U[a,b]}[J] = \int_a^b v dU[a,b](v) <br />
= \int_a^b \frac v{b-a} dv <br />
=\frac{v^2}{2(b-a)}|_a^b = \frac{b^2-a^2}{2(b-a)} = \frac{a+b}2<br />
Discrete P, specific params.: Let p be the uniform density function p(v) = 1/2 for all v in O = {0,1}. Then EP[{0,1}] = (1/2,1/2}.{0,1} = (1/2) 1 + (1/2) 0 = 1/2.
Discrete P, gen. params.: Let p be the uniform density function p(v) = 1/n for all v in W = {1, ..., n}. Then EP[W] = (1/n, ..., 1/n}.{1, ..., n} = (1 + ... + n)/n = n(n+1)/(2n) = (n+1)/2.