1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Partial Fraction Decompostion of (x^4 - 1) / (x^3 + x^2 + x)

  1. Aug 8, 2013 #1
    1. The problem statement, all variables and given/known data
    Find Partial Fraction Decomposition of
    ##(x^4 - 1) / (x^3 + x^2 + x)##

    2. Relevant equations

    3. The attempt at a solution
    ##(x^4 - 1) / (x^3 + x^2 + x) = (x^4 - 1) / (x)(x^2 + x + 1) = A/x + B/(x^2 + x + 1)##
    ##(x^4 - 1) = A(x^2 + x + 1) + B(x)##
    ##(x^4 - 1) = Ax^2 + Ax + A + Bx##
    ##(x^2 - 1)(x^2 + 1) = Ax^2 + A + Ax + Bx##
    ##(x^2 - 1)(x^2 + 1) = A(x^2 + 1) + x(A + B)##
     
  2. jcsd
  3. Aug 8, 2013 #2

    Zondrina

    User Avatar
    Homework Helper

    Looks pretty messy. You could try doing a polynomial long division which would get it all over with in one go rather than trying to equate all those coefficients.
     
  4. Aug 8, 2013 #3
    That would be preferred but I specifically need to approach the problem in this manner as part of teh assignment.

    Through long division, I got
    ##(x-1) + (x-1)/(x^3 + x^2 + x)##
     
  5. Aug 8, 2013 #4

    Zondrina

    User Avatar
    Homework Helper

    Alright then. You made a small error jumping to your second equal sign. Remember your numerator is going to look different if you have a quadratic in the denominator.
     
  6. Aug 8, 2013 #5
    I'm not seeing what you mean.
     
  7. Aug 8, 2013 #6

    Zondrina

    User Avatar
    Homework Helper

    If your quotient, lets call it ##Q(x)##, contains factors which are irreducible over the given field, then the numerator ##N(x)## of each partial fraction with such a factor ##F(x)## in the denominator must be found as a polynomial with ##deg(N) < deg(F)##, rather than as a constant.

    The meat of that basically states :

    ##\frac{x^4-1}{x(x^2 + x + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + x + 1}##

    In the second partial fraction notice that since ##x^2 + x + 1## is irreducible over ##ℝ##, we must find ##N(x)## such that ##deg(N) < deg(x^2 + x + 1) = 2##.

    In this case that amounts to finding an arbitrary linear polynomial since ##deg(Bx + C) = 1 < 2##.
     
  8. Aug 8, 2013 #7
    What does deg( mean?
     
  9. Aug 8, 2013 #8

    Zondrina

    User Avatar
    Homework Helper

    ##deg(f(x))## is used to denote the degree of the polynomial ##f(x)##.

    ##deg(x) = 1##
    ##deg(x^2) = 2##
     
  10. Aug 8, 2013 #9

    SteamKing

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper

    Partial fraction decomposition is recommended when the degree of numerator is less than the degree of the denominator. Using WK95's approach, you would first divide the original polynomials and then use partial fractions on the remainder.
     
  11. Aug 8, 2013 #10
    ##(x-1) + (x-1)/(x^3 + x^2 + x)##

    ##(x-1)/(x^3 + x^2 + x)=(x-1)/(x)(x^2 + x + 1)##
    ##(x-1)/(x)(x^2 + x + 1) = A/x + B/(x^2 + x + 1)##
    ##(x-1) = A(x^2 + x + 1) + B(x)##

    ##x=0##
    ##(x-1) = A(x^2 + x + 1) + (Bx + C)(x)##
    ##A = -1##

    And then I'm stuck with finding B since I can't find x for (x^2 + x + 1) = 0
     
    Last edited: Aug 8, 2013
  12. Aug 8, 2013 #11

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    You really need to review "partial fractions". You need
    ##\frac{x- 1}{x(x^2+ x+ 1)}= \frac{A}{x}+ \frac{Bx+ C}{x^2+ x+ 1}##
    That's because there is NO such x!

    After multiplying through by ##x(x^2+ x+ 1)## you have
    ##x- 1= A(x^2+ x+ 1)+ (Bx+ C)x= Ax^2+ Ax+ A+ Bx^2+ Cx= (A+ B)x^2+ (A+ C)x+ A##
    For those to be true for all x, you must have A+ B= 0, A+ C= 1, A= -1.
     
  13. Aug 8, 2013 #12
    Really sorry about that. Is there any particular textbook that you recommend I study from to review this sort of stuff as well as Calc I, II and III.

    Thanks a lot. I get it now
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Partial Fraction Decompostion of (x^4 - 1) / (x^3 + x^2 + x)
Loading...