- #1
- 810
- 0
I have: [tex] \frac{(1+j\omega)(3-j\omega)}{(3+j\omega)(3-j\omega)} [/tex]
When I perform the partial fraction expansion I get:
[tex] \frac{-2}{3+j\omega} [/tex]
Where my calculator gets:
[tex] 1 - \frac{-2}{3+j\omega} [/tex].
Why am I wrong?
I am performing the expansion as follows:
[tex] \bar F(s) = \frac{(1+s)(3-s)}{(3+s)(3-s)} [/tex]
and,
[tex] K_i = (s+p_i)\bar F (s) [/tex] where: [itex] s = - p_i [/tex]
note: [tex] p_i [/tex] corresponds to 3 and -3 respectively. I am getting:
[tex] K_1 = -2 [/tex]
and [tex] K_2 = 0 [/tex]
(this does not match my calculator.
I am assuming simple poles. Is this not proper?
thanks in advance!
When I perform the partial fraction expansion I get:
[tex] \frac{-2}{3+j\omega} [/tex]
Where my calculator gets:
[tex] 1 - \frac{-2}{3+j\omega} [/tex].
Why am I wrong?
I am performing the expansion as follows:
[tex] \bar F(s) = \frac{(1+s)(3-s)}{(3+s)(3-s)} [/tex]
and,
[tex] K_i = (s+p_i)\bar F (s) [/tex] where: [itex] s = - p_i [/tex]
note: [tex] p_i [/tex] corresponds to 3 and -3 respectively. I am getting:
[tex] K_1 = -2 [/tex]
and [tex] K_2 = 0 [/tex]
(this does not match my calculator.
I am assuming simple poles. Is this not proper?
thanks in advance!