Particle track detector to measure the charge of a particle

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum momentum of a particle that a particle track detector can measure with 90% confidence regarding its charge sign. The detector consists of two co-planar silicon layers spaced two meters apart, with a wire chamber positioned between them. The precision of the wire chamber is 100 micrometers, and a 1T magnetic field is applied perpendicular to the detector planes. The relationship between momentum, sagitta, and the dimensions of the setup is established through the equations p = eBr and s = L²/(8r), leading to the conclusion that the sagitta must be sufficiently large to ensure accurate charge measurement.

PREREQUISITES
  • Understanding of particle physics concepts, specifically charge measurement.
  • Familiarity with the equations of motion in magnetic fields, particularly p = eBr.
  • Knowledge of geometric properties related to sagitta in particle tracks.
  • Basic statistics, including normal distribution and standard deviation interpretation.
NEXT STEPS
  • Explore error propagation techniques in experimental physics.
  • Study the principles of magnetic field effects on charged particles.
  • Learn about the integration of position-dependent uncertainties in detector measurements.
  • Investigate statistical methods for determining confidence intervals in experimental data.
USEFUL FOR

Physics students, experimental physicists, and researchers working on particle detection and charge measurement methodologies.

Kara386
Messages
204
Reaction score
2

Homework Statement


The detector is made of two co-planar layers of silicon two metres apart, and there is a plane of wire chambers halfway between them. The wire chamber can measure a track with precision ##100\mu##m. What is the highest momentum a particle can have for which the detector will give the correct sign of the charge with 90% confidence?

There is a 1T field perpendicular to all the planes of the detector, ignore the effects of resolution and assume the track of the particle can be considered orthogonal to both the planes of the detector and the magnetic field.

Homework Equations

The Attempt at a Solution


This is going to involve the sagitta in some way. I have a couple of diagrams showing what I think is going on. In the diagrams ##s## is the sagitta and ##L## is the length of the charged particle track. Then I think the statement about precision means the error in the measurement of the sagitta is ##\pm 50\mu##m. ##B=1##T, ##L=2##m. I have also shown that ##s=\frac{L^2}{8r}## and given that ##p = eBr## where ##p## is momentum perpendicular to the field then
##p=\frac{eBL^2}{8s}##
My thoughts on what I need to do are that it might just be some sort of error propagation calculation, or that I need to find the point at which the sagitta is so small that to within error the track might be measured to curve the opposite way to what it really does, which would give the wrong charge of the particle. But I don't know how to actually do either of those things, I am very stuck!

I really appreciate any help. :)
 

Attachments

  • IMG_0762.JPG
    IMG_0762.JPG
    26.2 KB · Views: 479
  • IMG_0763.JPG
    IMG_0763.JPG
    28.5 KB · Views: 471
Physics news on Phys.org
It is unclear what "precision of 100 micrometer" means, but I would use it as standard deviation, not as twice the standard deviation.
An actual detector will have a position-dependent uncertainty so you have to integrate over positions, but that is beyond the scope of this problem.

The sign of the charge is the sign of the sagitta. How large does it have to be for a 10% chance to be measured with the wrong sign?
 
  • Like
Likes   Reactions: Kara386
mfb said:
It is unclear what "precision of 100 micrometer" means, but I would use it as standard deviation, not as twice the standard deviation.
An actual detector will have a position-dependent uncertainty so you have to integrate over positions, but that is beyond the scope of this problem.

The sign of the charge is the sign of the sagitta. How large does it have to be for a 10% chance to be measured with the wrong sign?
Ah, so I can assume it's distributed normally and use the tables to find the mean such that when the sagitta is zero only ten percent of values are above it. Thank you!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
904
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 85 ·
3
Replies
85
Views
13K