diegzumillo
- 177
- 20
Homework Statement
The Hamiltonian of an electron with mass m, electric charge q and spin
of \frac{\hbar }{2}\vec{\sigma} in a magnetic field described by the
potential vector \vec{A}\left( \vec{r},t\right) and a scalar potential U\left( \vec{r},t\right) is given by
\[H=\frac{1}{2m}\left[ \vec{P}-q\vec{A}\right] ^{2}+qU-\frac{q\hbar }{2m}\vec{<br /> \sigma}.\vec{B}\]
where \vec{B}=\vec{\nabla}\times \vec{A}. Show that this Hamiltonian can
also be obtained from Pauli Hamiltonian:
\[H=\frac{1}{2m}\left\{ \vec{\sigma}.\left[ \vec{P}-q\vec{A}\right] \right\}^{2}+qU\]
Homework Equations
I believe this one is useful here:
\[\left( \vec{\sigma}.\vec{A}\right) \left( \vec{\sigma}.\vec{B}\right) =\vec{A}.\vec{B}I+i\vec{\sigma}.\left( \vec{A}\times \vec{B}\right) \]
Wich in our case, we can rewrite it as
\[\left( \vec{\sigma}.\vec{A}\right) ^{2}=A^{2}I+i\vec{\sigma}.\left( \vec{A}\times \vec{A}\right) \]
(it's not the same vector A of the problem statement, of course)
The Attempt at a Solution
Using the above identity, we end up with a term like this:
\[\left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right] \times \left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right] =\vec{P}\times \vec{P}-\vec{P}\times q\vec{A}\left( \vec{R},t\right) -q\vec{A}\left( \vec{R},t\right)\times \vec{P}+q^{2}\vec{A}\left( \vec{R},t\right) \times \vec{A}\left( \vec{R},t\right) \]
Wich is... almost nice. If I knew what to do with all of these guys! I can see that if we consider only the second term we can solve the problem. What does this mean?..
Using
\[\vec{P}\rightarrow i\hbar \vec{\nabla}\]\[-\vec{P}\times q\vec{A}\left( \vec{R},t\right) =-i\hbar q\vec{\nabla}\times \vec{A}\left( \vec{R},t\right) =-i\hbar q\vec{B}\]
And using this result in the Hamiltonian..
\[H=\frac{1}{2m}\left\{ \left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right]<br /> ^{2}+i\vec{\sigma}.\left[ -i\hbar q\vec{B}\right] \right\} +qU\left( \vec{R},t\right) \]\[
H=\frac{1}{2m}\left\{ \left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right]^{2}+\hbar q\vec{\sigma}.\vec{B}\right\} +qU\left( \vec{R},t\right) \]
\[H=\frac{1}{2m}\left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right] ^{2}+<br /> \frac{\hbar q}{2m}\vec{\sigma}.\vec{B}+qU\left( \vec{R},t\right) \]