Peltier cell in series both electrically and thermally

AI Thread Summary
The discussion centers around the configuration of Peltier cells, specifically the idea of connecting them both electrically and thermally in series. While typically connected electrically in series and thermally in parallel, the proposal suggests cascading them at the cell level rather than the module level. Concerns are raised about the potential for one cell to underperform or fail due to differing resistances and current demands. The conversation highlights the importance of thermal insulation between layers and the limitations imposed by maximum temperature differences per module. Overall, the feasibility of this configuration raises questions about efficiency and design considerations in thermoelectric cooling systems.
askingask
Messages
90
Reaction score
5
IMG_1820.jpeg


So here you can see the basics behind a thermocouple.


IMG_1818.png

What people usually do, is that they connect these junctions electrically in series and thermally in parallel.


IMG_1819.jpeg


Now another thing people do is cascading several peltier modules.


image.jpg

Now my thought was, why not connect them electrically in series and thermally also in series directly like shown above?
That way you cascade them on a cell level instead of on a module level.

I know that there is a reason why when the modules are cascaded the modules get bigger and bigger towards the warm end to effectively cool each stage.

What do you think about that idea and do you have any reference I could look in to?
 

Attachments

Engineering news on Phys.org
I’m not an expert on this stuff by any stretch of the imagination, but I think running them in series electrically is going to either fry one, or cause one to severely underperform. I suspect they have different resistances and current demands, but will require similar voltages.
 
Flyboy said:
I’m not an expert on this stuff by any stretch of the imagination, but I think running them in series electrically is going to either fry one, or cause one to severely underperform. I suspect they have different resistances and current demands, but will require similar voltages.
They are actually usually connected in series. The peltier modules shown above are connected in series. That itself isn‘t interesting, the interesting part is them being thermally in series as opposed to being thermally in parallel like the peltier modules shown above.
 
askingask said:
I know that there is a reason why when the modules are cascaded the modules get bigger and bigger towards the warm end to effectively cool each stage.

What do you think about that idea and do you have any reference I could look in to?
The limitation is on the thermal insulation that is required between each layer of Peltier junctions. You must build colder insulated spaces inside cooler insulated spaces, like those Russian dolls.
https://en.wikipedia.org/wiki/Matryoshka_doll

Even with perfect peripheral insulation, there is a maximum temperature difference possible per module. That is determined by the maximum current, since that must provide for the thermal conduction, backwards through the Peltier module itself.

Your first reference should be ...
https://en.wikipedia.org/wiki/Thermoelectric_cooling
 
askingask said:
Now my thought was, why not connect them electrically in series and thermally also in series directly like shown above?
That way you cascade them on a cell level instead of on a module level.
The modules themselves are already a combination of series and parallel connections on junction level: the 12V (or other convenient) operating voltage is the result of that.

You can add further elements in series, but you need to match current: you can add more parallel, but then you should match voltages (that's what happens on that pyramid-stack on the picture).
 
Rive said:
The modules themselves are already a combination of series and parallel connections on junction level: the 12V (or other convenient) operating voltage is the result of that.

You can add further elements in series, but you need to match current: you can add more parallel, but then you should match voltages (that's what happens on that pyramid-stack on the picture).
You mean electrically?
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top