An interesting question that is not easily answered. Classically, a black hole is one possible outcome of a core collapse event. It takes an estimated 3 solar masses of remanant material to exceed neutron degeneracy pressure and allowing for a black hole to form. Unfortunately, there is nothing tidy about a core collapse supernova. They tend to shed large amounts of mass before going boom and the explosion itself is assymetrical, expelling appreciable amounts of the remaining mass. So, the minimum mass for a black hole precursor star is highly uncertain. We know that about 8 solar masses is the minimum required for a core collapse event. To the best of our knowledge, a neutron star results when the precursor star is less than about 20 solar masses. It gets rather muddy after that. In theory a star much more massive should collapse directly into a black hole. Observation, however, does not affirm theory as stars in excess of 20 solar masses are known to have left neutron star remnants. Now, back to the OP, stars exceeding 20 solar masses are extraordinarily rare. According to Wiki, fewer than 100 such stars are known to exist.