- #1

karnten07

- 213

- 0

**Permutations (last question of sheet, yay!)**

1. Homework Statement [/b]

[tex]\eta[/tex]:=

(1 2 ... n-1 n)

(n n-1 ... 2 1)

[tex]\in[/tex]S[tex]_{n}[/tex] for any n[tex]\in[/tex]N

n.b That should be 2 lines all in one large bracket btw

a.) Determine its sign.

b.) Let n [tex]\geq[/tex]1. Let <a1,...,as> [tex]\in[/tex]Sn be a cycle and let [tex]\sigma[/tex][tex]\in[/tex]Sn be arbitrary. Show that

[tex]\sigma\circ[/tex] <a1,...,as> [tex]\circ[/tex][tex]\sigma^{-1}[/tex] = <[tex]\sigma[/tex](a1),...,[tex]\sigma[/tex](as)> in Sn.

## Homework Equations

## The Attempt at a Solution

I get the sign of the permutation to be (-1)^n/2

I don;t know how to do the second part, any ideas?

Last edited: