Perturbation Theory: Calculating 1st-Order Correction

AI Thread Summary
The discussion focuses on calculating the first-order correction in perturbation theory, with participants noting that many quantum mechanics textbooks primarily cover first-order examples. Some recommended texts include Sakurai, Gasiorowicz, Zettili, and Griffiths, with Griffiths also addressing second-order perturbation theory. A participant expresses difficulty with the complexity of these texts and seeks simpler resources or examples. The conversation emphasizes the need for clear explanations and examples to understand perturbation theory better. Overall, the thread highlights the challenge of finding accessible learning materials for higher-order corrections in quantum mechanics.
ooleonardoo
Messages
2
Reaction score
0
Homework Statement
Calculate the second-order corrections to energy for the following Hamiltonian matrix.
Use the degenerate perturbation theory. Consider 'b' as perturbation.
Relevant Equations
...
Of course, this question consisted of two parts. In the first part, we needed to calculate the first-order correction. It was easy. In all the books on quantum mechanics I saw, only first-order examples have been solved. So I really do not know how to solve it. Please explain the solution method to me. Thankful
2021-11-23 11_09_58-Untitled - Paint.png
 
Physics news on Phys.org
What are those books you mention? I would say Sakurai and probably a lot of other books do actually explain how to do PT to arbitrary orders.
 
Gaussian97 said:
What are those books you mention? I would say Sakurai and probably a lot of other books do actually explain how to do PT to arbitrary orders.
gasiorowicz, zettili , griffiths
The level of the book you mentioned is high for me. Do you know of any other book that explains this with an example?
 
Actually, Griffiths does have a discussion on second-order PT.
Anyway, can you show us how did you compute the first-order correction?
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top