Phase difference RLC circuit

Click For Summary
In a parallel RLC circuit, the complex impedance is expressed as 1/(1/R - j(1/wL + wC). To find the phase difference between voltage and current, the formula tan^-1(im(z)/re(z)) is used, but the impedance needs to be in standard complex form. Rationalizing the denominator can complicate the expression, but it is necessary to determine the angle theta. A suggested method involves converting the impedance into the form z = a/(a^2 + b^2) - (b/(a^2 + b^2))j. This approach helps in calculating the phase difference effectively.
Tesla In Person
Messages
34
Reaction score
13
For a parallel RLC circuit, I have found the complex impedance to be 1/ (1/R -j(1/wL +wC)) . I need to find the phase difference between the voltage and current in the circuit. I know it's given by tan^-1(im(z)/re(z)) but how do I do it here as the expression is a fraction?
 
Physics news on Phys.org
Is this question for schoolwork?
 
berkeman said:
Is this question for schoolwork?
no.
 
berkeman said:
Is this question for schoolwork?
I'm doing this question to prepare for exams but i got stuck here. Because it's not in standard complex form, i don't know how to find angle theta. I could rationalize the denominator but i might end up with a messier expression.
 
Thread 'Why wasn’t gravity included in the potential energy for this problem?'
I’m looking at the attached vibration problem. The solution in the manual includes the spring potential energy but does NOT include the gravitational potential energy of the hanging mass. Can someone explain why gravitational potential energy is not included when deriving the equation of motion? I tried asking ChatGPT but kept going in circles and couldn't figure out. Thanks!

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
19
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K