Phase Transitions in the Van Der Waals Gas

AI Thread Summary
The discussion focuses on the behavior of isothermal compressibility (κ_T) in relation to the free energy of a Van der Waals gas. It highlights that when the free energy reaches a minimum, the second derivative of free energy with respect to volume becomes positive, indicating stability. The participant concludes that κ_T must remain positive for system stability, suggesting that negative compressibility would indicate instability. They identify that all sketched isotherms present a problem except for one, which is continuously left-curved. This analysis emphasizes the critical relationship between free energy minima and the stability of the gas system.
GravityX
Messages
19
Reaction score
1
Homework Statement
What does a minimum free energy mean for isothermal compressibility?
Relevant Equations
##\kappa_T=-\frac{1}{V}\Bigl( \frac{\partial V}{\partial P} \Bigr)_T=\frac{1}{V}\Bigl( \frac{\partial^2 F}{\partial V^2} \Bigr)^{-1}_T##
Hi,

I am not quite sure if I have understood the second task correctly, but I proceeded as follows.

Bildschirmfoto 2022-12-02 um 11.45.28.png


It's about what happens to the isothermal compressibility when the free energy becomes minimal. In the first task there was already the equation ##\kappa_T=\frac{1}{V}\Bigl( \frac{\partial^2 F}{\partial V^2} \Bigr)^{-1}_T## and I assume that this was not given without reason, but that one can use it to solve the second task.

If the free energy becomes minimal, then surely it means that the difference with ##F_2## < ##F_1## is therefore ##F_2-F_1## negative and thus also its derivative. Then the isothermal compressibility would be negative and thus left-curved.
 
Physics news on Phys.org
If the free energy is minimal for an isotherm, it means that the 2nd derivative of F with respect to V is positive.
 
Thanks Chestermiller for your help 👍

That would then mean that ##\kappa_T## would be curved to the left. If I have understood correctly, then ##\kappa_T## must always be positive for the system to be stable.

The problem says "For which of
the sketched isotherms does this pose a problem?" I would say for all but E, as this is continuously left curved.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top