Phase Transitions in the Van Der Waals Gas

AI Thread Summary
The discussion focuses on the behavior of isothermal compressibility (κ_T) in relation to the free energy of a Van der Waals gas. It highlights that when the free energy reaches a minimum, the second derivative of free energy with respect to volume becomes positive, indicating stability. The participant concludes that κ_T must remain positive for system stability, suggesting that negative compressibility would indicate instability. They identify that all sketched isotherms present a problem except for one, which is continuously left-curved. This analysis emphasizes the critical relationship between free energy minima and the stability of the gas system.
GravityX
Messages
19
Reaction score
1
Homework Statement
What does a minimum free energy mean for isothermal compressibility?
Relevant Equations
##\kappa_T=-\frac{1}{V}\Bigl( \frac{\partial V}{\partial P} \Bigr)_T=\frac{1}{V}\Bigl( \frac{\partial^2 F}{\partial V^2} \Bigr)^{-1}_T##
Hi,

I am not quite sure if I have understood the second task correctly, but I proceeded as follows.

Bildschirmfoto 2022-12-02 um 11.45.28.png


It's about what happens to the isothermal compressibility when the free energy becomes minimal. In the first task there was already the equation ##\kappa_T=\frac{1}{V}\Bigl( \frac{\partial^2 F}{\partial V^2} \Bigr)^{-1}_T## and I assume that this was not given without reason, but that one can use it to solve the second task.

If the free energy becomes minimal, then surely it means that the difference with ##F_2## < ##F_1## is therefore ##F_2-F_1## negative and thus also its derivative. Then the isothermal compressibility would be negative and thus left-curved.
 
Physics news on Phys.org
If the free energy is minimal for an isotherm, it means that the 2nd derivative of F with respect to V is positive.
 
Thanks Chestermiller for your help 👍

That would then mean that ##\kappa_T## would be curved to the left. If I have understood correctly, then ##\kappa_T## must always be positive for the system to be stable.

The problem says "For which of
the sketched isotherms does this pose a problem?" I would say for all but E, as this is continuously left curved.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top