Hi everybody!(adsbygoogle = window.adsbygoogle || []).push({});

I am wondering, among other things, whether the Special Relativity relationship E = p for a photon (I am using c = 1 units ) is still valid in General Relativity.

Let me explain my question in detail. By applying the null geodesic condition with a diagonal metric, we obtain

[tex] ds^2 = 0 \Rightarrow p^2 = -g_{00}(P^0)^2 [/tex] (1).

where [tex] P^\mu [/tex] is the four-momentum and [tex] p^2 \equiv g_{ij} P^i P^j = P^i P_i [/tex].

My question is: in SR we did not have any doubt in identifying P^0 as the energy of the particle. How does it transfer to GR? What is energy and what is momentum? My shot was that, if we want to preserve the E = p relation, then we need that

[tex] p \rightarrow momentum [/tex]

and

[tex] \sqrt{-g_{00}} P^0 \rightarrow energy [/tex].

Is this correct?

And what about velocity?

It is easy to find that

[tex] v^i = \frac{P^i}{P^0} [/tex],

where [tex] v^i \equiv \frac{dx^i}{dt} [/tex].

If we contract both sides of the above expression with [tex] g_{ij} v^j [/tex] and if we define [tex] v^2 \equiv g_{ij} v^i v^j = v^i v_i [/tex], we find that

[tex] p = (P^0) v [/tex]. (2)

By comparing (1) and (2) it emerges that

[tex] v^2 = -g_{00} [/tex].

In a flat space-time (or in an inertial frame), then [tex] g_{00} = -1 [/tex] and v = c. Otherwise we have that the speed of light is different from c. Does it mean that in GR the concept of "constant speed of light" makes sense only in inertial frames? This is equivalent to say that the speed of light is equal to "c" only locally, since for the equivalence principle we can always find an inertial frame, but it has to be locally defined (in a space-time sense).

One last question. With respect to Cosmology, one usually defines the comoving distance as the distance covered by a photon in the comoving frame. The particle horizon is the comoving distance from the Big Bang to today; by using a LCDM model it amounts to around 14.000 Mpc. I always thought that this was some sort of non-physical distance since it is the distance the photon traveled in a reference frame decoupled from the expansion. I was thinking that the "physical" particle horizon was just the age of the Universe times the speed of light, i.e. around 4.500 Mpc. Now I see that this is not the case. In fact, there is no such a "physical" frame in which the speed of the photon is constantly equal to "c" along all his path, hence it makes no sense to say that it "physically" travelled speed_of_light X time_of_travel kilometers. Am I right?

Thank you very much for any answer, and sorry for the long post :)

Cheers,

Guido

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Photon/particle's energy in General Relativity

Loading...

Similar Threads - Photon particle's energy | Date |
---|---|

B Why can't light travel faster than c? | Mar 14, 2018 |

B Proper time of photon in Friedman metric | Feb 26, 2018 |

B Photons, mass, and black holes | Feb 8, 2018 |

Relative velocities of particles and photons | Jun 30, 2014 |

Why Hawking radiation contains other particles besides photon? | Nov 20, 2009 |

**Physics Forums - The Fusion of Science and Community**