Let us say we have a universe permeated with a monochromatic photon gas of wavelength L0 at time t0 and the universe is expanding (say for simplicity with a constant rate H, Hubble's Constant). If I sit there and measure the wavelength of the photons as a function of time, what does it look like?(adsbygoogle = window.adsbygoogle || []).push({});

From a dimensional analysis arguement I'd expect something like

L = L0 (1 + H(t-t0))

Is this correct? And how would I calculate this directly?

Also, this suggests all frequencies are adjusted by just a multiplicative constant. If so, this seems to suggest a photon gas initially in a blackbody thermal distribution would not stay so (it's distribution would have a different form at a later time). But that can't be right, as (for instance) the CMB is a very nice blackbody distribution. So what am I doing wrong here?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Photon wavelength in expanding universe

**Physics Forums | Science Articles, Homework Help, Discussion**