Physical explanation for power broadening

Carnot
Messages
18
Reaction score
0
I have been looking into broadening mechanisms and I'm stuck at trying to provide a physical explanation for power broadening. I get how the math shows that at high intenseties the decay rate goes through the roof due to saturation, but how does this increased decay rate manifest in a spread of generated frequencies? Are the electrons reexcited or decaying while between ground and excited states?
 
Physics news on Phys.org
The excitation and deexcitation has "less time". Imagine a wavepacket with a shorter length: it has to have a broader frequency distribution (the mathematical "uncertainty principle" for Fourier transformations). The same happens here.
 
The precision with which you can define the frequency of a wave depends on the number of cycles. If you have 10 cycles, you can define the wave length or frequency to ~10%, 100 cycles to ~1%, 1000 cycles to ~0.1% and so on.

A strongly damped wave or a short pulse has a small number of cycles. A fast decay means strong damping.

Mathematically, in order to produce a short wave pulse you have to overlay waves with many frequencies. The spread of frequencies increases the shorter the pulse. A single frequency wave would have to be infinitely long in space and in time.

(this is the same thing mfb said, in more words)
 
Thank you for both answers, they helped a lot :-)
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top