Wox
- 68
- 0
The classical expression of a plane electromagnetic wave (electric part)
<br /> \bar{E}(t,\bar{x})=\bar{E}_{0}e^{i(\bar{k}\cdot \bar{x}-\omega t)}<br />
looks a lot like the basis function of the Fourier decomposition in Minkowski space-time
<br /> \bar{E}(\bar{w})=\int_{-\infty}^{\infty}\hat{\bar{E}}(\bar{\nu})e^{2\pi i\ \eta(\bar{\nu},\bar{w})}d\bar{\nu}<br />
where \bar{E}\colon\mathbb{R}^{4}\to\mathbb{R}^{4} and \bar{w}=(ct,\bar{x}). If I write \bar{\nu}=\frac{\nu}{c}(1,\bar{n}) with \left\|\bar{n}\right\|=1 then we get
\eta(\bar{\nu},\bar{w})=\frac{\nu}{c}\bar{n}\cdot \bar{x}-\nu t=\frac{1}{2\pi}(\bar{k}\cdot \bar{x}-\omega t) and
<br /> \bar{E}(\bar{w})=\int_{-\infty}^{\infty}\hat{\bar{E}}(\bar{\nu})e^{ i\ (\bar{k}\cdot \bar{x}-\omega t)}d\bar{\nu}<br />
and for a monochromatic wave
<br /> \bar{E}(\bar{w})=\bar{E}(ct,\bar{x})=\hat{\bar{E}}(\bar{\nu})e^{ i\ (\bar{k}\cdot \bar{x}-\omega t)}<br />
which is close to the classical expression, but not exactly. So the point is, I feel Fourier decomposition in Minkowski space and the classical plane wave are related, but I'm not sure how. Can someone clarify?
<br /> \bar{E}(t,\bar{x})=\bar{E}_{0}e^{i(\bar{k}\cdot \bar{x}-\omega t)}<br />
looks a lot like the basis function of the Fourier decomposition in Minkowski space-time
<br /> \bar{E}(\bar{w})=\int_{-\infty}^{\infty}\hat{\bar{E}}(\bar{\nu})e^{2\pi i\ \eta(\bar{\nu},\bar{w})}d\bar{\nu}<br />
where \bar{E}\colon\mathbb{R}^{4}\to\mathbb{R}^{4} and \bar{w}=(ct,\bar{x}). If I write \bar{\nu}=\frac{\nu}{c}(1,\bar{n}) with \left\|\bar{n}\right\|=1 then we get
\eta(\bar{\nu},\bar{w})=\frac{\nu}{c}\bar{n}\cdot \bar{x}-\nu t=\frac{1}{2\pi}(\bar{k}\cdot \bar{x}-\omega t) and
<br /> \bar{E}(\bar{w})=\int_{-\infty}^{\infty}\hat{\bar{E}}(\bar{\nu})e^{ i\ (\bar{k}\cdot \bar{x}-\omega t)}d\bar{\nu}<br />
and for a monochromatic wave
<br /> \bar{E}(\bar{w})=\bar{E}(ct,\bar{x})=\hat{\bar{E}}(\bar{\nu})e^{ i\ (\bar{k}\cdot \bar{x}-\omega t)}<br />
which is close to the classical expression, but not exactly. So the point is, I feel Fourier decomposition in Minkowski space and the classical plane wave are related, but I'm not sure how. Can someone clarify?