Please check my solutions -- Mass being pulled with an angled rope

Click For Summary
The discussion focuses on calculating the work done by a force F on a block of mass M, considering friction and normal forces. The force F of 100 N is applied at a 60-degree angle, and the friction force is determined using the formula f = μN, not f = μmg. The normal force N must be calculated correctly, as the applied force's angle affects its vertical component. The correct equation for the normal force includes the downward component of the applied force, leading to N - 100sin(60) = 4 * 9.81. Accurate calculations of these forces are essential for determining the work done.
ZurraMath
Messages
1
Reaction score
0
A block of mass M = 4 kg is pulled by a force F = 100 N forming an angle of 60 degrees with themhorizontal plane with friction coefficient 0.3.

Determine the work of force F, friction force and normal force.

02.png


04.png
 
Physics news on Phys.org
Welcome to PF. :smile:

On your first solution, what are units of "S" for work? What units should Work be in?
 
I assume S to be the displacement?
 
rsk said:
I assume S to be the displacement?
Oh, thanks. I guess the displacement is indeed a variable -- I missed that.
 
The friction force is $$f=\mu N$$ and NOT $$f=\mu mg$$. So to correctly determine the friction force you need to find the normal force N first.
Your equation for the normal force N doesn't seem correct either (though the final result might be correct), it should be $$N-100\sin60=4\cdot 9.81$$ i.e. the force of 100N is actually forming an angle of -60 degrees with the horizontal, that is it is pointing down not up.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
13
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K