Exploring "The Mathematical Theory of Black Holes" by S. Chandrasekhar

kparchevsky
Messages
4
Reaction score
0
In page 67 of book "The mathematical theory of black holes" by S. Chandrasekhar in chapter 2 "Space-Time of sufficient generality" there is a theorem that metric of a 2-dimensional space
$$ds^2 = g_{11} (dx^1)^2 + 2g_{12} dx^1 dx^2 + g_{22} (dx^2)^2$$
can be brought to a diagonal form.

I would do this in the following way: introduce new contravariant coordinates ##x'## (how ##x## depend on ##x'##) ##x^1 = p(x'^1, x'^2), x^2= q(x'^1, x'^2)##, differentiate them, plug ##dx^1## and ##dx^2## into the metric above, and equate factor at ##dx'^1 dx'^2## to zero.

That is not how it is done in the book. First they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)
$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$
then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),
$$ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$
though coordinate transformations are defined for contravariant coordinates (up indexes).

I cannot follow the logic of the derivation.

Could you help me to understand how it is derived in the book?

Thank you.

[Mentor Note -- New user has been PM'd about posting math using LaTeX and has been pointed to the "LaTeX Guide" link, especially for threads with the "A" prefix]
 
Last edited:
Physics news on Phys.org
kparchevsky said:
[...] they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$ then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),

kparchevsky said:
$$ ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$ though coordinate transformations are defined for contravariant coordinates (up indexes). I cannot follow the logic of the derivation.
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
 
  • Like
Likes kparchevsky, topsquark, vanhees71 and 1 other person
strangerep said:
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
Thank you. Trying to prove Eq.(8) I took differential from both sides of Eq.(6), solved it for ##dx^i##, converted it to ##dx_i##, plugged into Eq.(7) and zeroed term at ##dx'^i dx'^j##, but I just had to use the definition of a tensor! The rest of derivation in the book is clear.
 
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
 
haushofer said:
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
>I don't get why you use "covariant coordinates" in the first place
The goal was to prove the specific formula in the specific book, and this formula was written in covariant coordinates.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top