MHB Points of the surface with minimum distance to the point (3,0,0)

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

We have the function $$f(x,y)=(x-3)^2+y^2+(x-y)^2$$ and I have shown that at $(2,1)$ we have a minimum and so $f(2,1)\leq f(x,y)$ for all $(x,y\in \mathbb{R}^2$.

I did that in this way:
I calculated the gradient and set this equal to zero and found that the only critical point is $(2,1)$. Then I calculated the Hessian matrix, the eigenvalues and since these are positive we get that the critical point is a minimum.
Is this the only way to do that? I mean after having found the critical point could we somehow show directly that $f(2,1)\leq f(x,y)$ for all $(x,y\in \mathbb{R}^2$ without using the Hessian Matrix?

:unsure: Now I want to determine the points of the surface $z^2=8+(x-y)^2$ that have the minimum distance to the point $(3,0,0)$.

I have done the following:

Let $(x,y,z)$ be the point that we are looking for. This point is on the surface, so it satisfies the equation $z^2=8+(x-y)^2$.
The distance to $(3,0,0)$ is $d(x,y,z)=\sqrt{(x-3)^2+y^2+z^2}$.
We can also consider $d^2$ onstead of $d$, or not?
We can substitute $z^2$ by $8+(x-y)^2$, or not?
If yes, then we get $d^2=(x-3)^2+y^2+8+(x-y)^2=(x-3)^2+y^2+(x-y)^2+8=f(x,y)+8$.
So we have the function $f$ plus a constant. Does this mean that the minimum of $d$ is at the same point as the minimum of $f$ ?:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Is this the only way to do that? I mean after having found the critical point could we somehow show directly that $f(2,1)\leq f(x,y)$ for all $(x,y\in \mathbb{R}^2$ without using the Hessian Matrix?

Hey mathmari!

The function consists of only squares and it follows that the function value increases to plus infinity in all directions.
In other words, the critical point cannot be a maximum, and it cannot be a saddle point either.
Therefore it must be a minimum. 🤔

mathmari said:
So we have the function $f$ plus a constant. Does this mean that the minimum of $d$ is at the same point as the minimum of $f$ ?

Yep. (Sun)
 
Klaas van Aarsen said:
The function consists of only squares and it follows that the function value increases to plus infinity in all directions.
In other words, the critical point cannot be a maximum, and it cannot be a saddle point either.
Therefore it must be a minimum. 🤔

That it cannot be a maximum is clear to me.
I haven't really understood why it cannot be a saddle point. Could you explain that further to me? :unsure:
 
mathmari said:
That it cannot be a maximum is clear to me.
I haven't really understood why it cannot be a saddle point. Could you explain that further to me?
If it is a saddle point, then there must be a direction where $f$ goes to up, and also a direction where $f$ goes down.
Since $f$ goes to $+\infty$ in all directions, it's not going down. 🤔
 
Klaas van Aarsen said:
If it is a saddle point, then there must be a direction where $f$ goes to up, and also a direction where $f$ goes down.
Since $f$ goes to $+\infty$ in all directions, it's not going down. 🤔

I see! Thank you very much! 🤩
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K