Poisson process is identical on equal intervals?

Click For Summary
SUMMARY

The discussion centers on the properties of the Poisson point process, specifically the independence of increments. The probability distribution for a Poisson random variable ##N_t## is defined as $$\frac{(\lambda t)^xe^{-\lambda t}}{x!}$$. Participants clarify that the distribution of the increment ##X_t = N_{t+\alpha} - N_t## is independent of ##t##, emphasizing that the correct approach is to show that the probability of ##N_{\alpha+t}## being ##x## is equivalent to the sum of probabilities of ##N_t## and ##N_\alpha##. The importance of distinguishing between random variables and their probabilities is also highlighted.

PREREQUISITES
  • Understanding of Poisson processes and their properties
  • Familiarity with probability distributions and random variables
  • Knowledge of stochastic processes
  • Basic skills in LaTeX for mathematical notation
NEXT STEPS
  • Study the properties of Poisson processes, focusing on stationary and independent increments
  • Learn about the concept of counting processes in stochastic analysis
  • Explore the relationship between random variables and their probability distributions
  • Review advanced topics in stochastic processes, such as Markov chains and renewal theory
USEFUL FOR

Mathematicians, statisticians, and students studying stochastic processes, particularly those interested in the properties of Poisson processes and their applications in probability theory.

docnet
Messages
796
Reaction score
486
Homework Statement
Please see the red step, I don't think it's a correct step because the parts don't add up right.
Relevant Equations
.
Let ##N_t## be the Poisson point process with the probability of the random variable ##N_t## being equal to ##x## is given by $$\frac{(\lambda t)^xe^{-\lambda t}}{x!}.$$ ##N_t## has stationary and independent increments, so for any ##\alpha\geq 0, t\geq 0,## the distribution of ##X_t = N_{t+\alpha} -N_t## is independent of ##t.##

I'm trying to show this explicitly.


$$
\begin{align*}
X_{t}&= N_{t+\alpha}-N_{t} \\
&= N_{t} + N_\alpha -N_{t} \\
&= N_\alpha \\
&=\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} .
\end{align*}$$

I don't think it's correct because
$$\begin{align*}
N_{t} + N_\alpha &= \frac{(\lambda t)^xe^-{\lambda t}}{x!} +\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} \\
&\neq \frac{(\lambda (t+\alpha))^xe^{-\lambda (t+\alpha)}}{x!}= N_{t+\alpha} .
\end{align*}$$
 
Last edited:
Physics news on Phys.org
The latex formatting issues are fixed.
 
Last edited:
You are not trying to show the correct thing. What your last equation would imply is that the probability of ##N_t## and ##N_\alpha## being ##x## is equal to the probability of ##N_{\alpha+t}## being ##x##.

What you should be showing is that the probability of ##N_{\alpha+t}## being ##x## is the same as the sum of the probabilities of ##N_t## being ##y## at the same time as ##N_\alpha## is ##x-y## for all ##y##.

A random variable is not equal to the probability of it being ##x##.
 
Orodruin said:
You are not trying to show the correct thing. What your last equation would imply is that the probability of ##N_t## and ##N_\alpha## being ##x## is equal to the probability of ##N_{\alpha+t}## being ##x##.
You're so right! I knew it didn't quite make sense but I didn't have the knowledge to pinpoint the reason. Thank you.
Orodruin said:
What you should be showing is that the probability of ##N_{\alpha+t}## being ##x## is the same as the sum of the probabilities of ##N_t## being ##y## at the same time as ##N_\alpha## is ##x-y## for all ##y##.
Would it be better, then, to say
$$
\begin{align*}
N_{t+\alpha} -N_t&=\Big(\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]+\frac{(\lambda (t+\alpha))^xe^{-\lambda (\alpha)}}{x!}\Big)-\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]\\
&= \frac{(\lambda \alpha)^xe^{-\lambda (\alpha)}}{x!}= N_{\alpha} ?
\end{align*}$$

Orodruin said:
A random variable is not equal to the probability of it being ##x##.
You're right! So instead the probability function of the random variable ##N_t## gives the probabilities of it being ##x##, given that ##x=0## with probability ##1## at ##t=0##? 🤔
 
docnet said:
Would it be better, then, to say
$$
\begin{align*}
N_{t+\alpha} -N_t&=\Big(\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]+\frac{(\lambda (t+\alpha))^xe^{-\lambda (\alpha)}}{x!}\Big)-\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]\\
&= \frac{(\lambda \alpha)^xe^{-\lambda (\alpha)}}{x!}= N_{\alpha} ?
\end{align*}$$
Not really. You are still mixing up the probabilities with the random variable itself.

docnet said:
You're right! So instead the probability function of the random variable ##N_t## gives the probabilities of it being ##x##, given that ##x=0## with probability ##1## at ##t=0##? 🤔
Yes, which is definitely not the same as ##N_t## itself. The probsbilities are any numbers between 0 and 1 and ##N_t## is a discrete RV which takes imteger values.
 
So I looked at my notes again, and it turns out one way to show (maybe it's wrong) that distribution of ##N_{\alpha+t}-N_t## is independent of ##t## is by using the definition of the counting process: for any ##\alpha,t\geq 0##, ##N_{\alpha+t}-N_t## equals the number of events that occur in the interval ##(\alpha,t]##, then use the fact that ##N_t## has stationary increments to say ##N_{\alpha+t}-N_t=N_\alpha## for all ##\alpha,t\geq 0##.

Is it ok to say that the independence of the increments of ##N_t## is not required because the stationary property? I thank you for your effort and patience in helping me learn Stochastic processes.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
6
Views
1K
Replies
6
Views
1K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K