MHB PolkaDots 54's question at Yahoo Answers (Diagonalization, conic section))

Click For Summary
The conic section represented by the equation 3x^2 + 2xy + 3y^2 - 8 = 0 is identified through diagonalization using the Spectral theorem. The associated matrix has eigenvalues of 2 and 4, leading to eigenspaces that provide the basis for the transformation. An orthonormal basis is established, allowing for a change of coordinates that simplifies the equation. The resulting equation in the new coordinates is (x')^2 + 2(y')^2 = 4, which describes an ellipse. Thus, the conic section is confirmed to be an ellipse.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Use diagonalization to identify the conic section 3x^2 + 2xy + 3y^2 - 8 = 0

Here is a link to the question:

Diagonalization to identify conic section? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello PolkaDots 54,

We'll use the Spectral theorem. We can express $3x^2 + 2xy + 3y^2 - 8 = 0$:
$$(x,y) \begin{pmatrix}{3}&{1}\\{1}&{3} \end{pmatrix} \begin{pmatrix}{x}\\{y}\end{pmatrix}=8 \Leftrightarrow (x,y)A \begin{pmatrix}{x}\\{y}\end{pmatrix}=8$$ Eigenvalues of $A$:
$$\chi(\lambda)=\det (A-\lambda I)=\begin{vmatrix}{3-\lambda}&{1}\\{1}&{3-\lambda}\end{vmatrix}=\lambda^2-6\lambda+8=0\Leftrightarrow \lambda= 2\:\vee\;\lambda=4$$ Basis of the eigenspaces: $$\ker\;(A-2I)\;\equiv\left \{
\begin{array}{rcrcr}
\,x_1 & + & \,x_2 & = & 0 \\
\,x_1 & + & \,x_2 & = & 0
\end{array}
\right .\quad ,\quad B_2=\{(1,-1)\}$$
$$\ker\;(A-4I)\;\equiv\left \{
\begin{array}{rcrcr}
-\,x_1 & + & \,x_2 & = & 0 \\
\,x_1 & - & \,x_2 & = & 0
\end{array}
\right .\quad ,\quad B_4=\{(1,1)\}$$ Eigenvectors orthonormal basis of $\mathbb{R}^2$:
$$B=\left\{\frac{1}{\sqrt{2}}(1,-1),\frac{1}{\sqrt{2}}(1,1)\right\}$$ Change of basis matrix (orthogonal because its columns are orthonormal) :
$$P=\frac{1}{\sqrt{2}}\begin{pmatrix}{\;\;1}&{1}\\{-1}&{1}\end{pmatrix}$$ Change of coordinates:
$$\begin{pmatrix}{x}\\{y} \end{pmatrix}=P \begin{pmatrix}{x'}\\{y'} \end{pmatrix}$$ Then, $$(x,y)A \begin{pmatrix}{x}\\{y} \end{pmatrix}=8\Leftrightarrow (x',y')P^TAP \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\Leftrightarrow (x',y')P^{-1}AP \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\\ (x',y') \begin{pmatrix}{2}&{0}\\{0}&{4} \end{pmatrix} \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\Leftrightarrow 2(x')^2+4(y')^2=8\Leftrightarrow (x')^2+2(y')^2=4$$ The equation of the conic with respect to $B$ is $(x')^2+2(y')^2=4$ or equivalently $$\boxed{\dfrac{(x')^2}{2^2}+\dfrac{(y')^2}{(\sqrt{2})^2}=1\quad (\mbox{ellipse})}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K