PolkaDots 54's question at Yahoo Answers (Diagonalization, conic section))

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Diagonalization Section
Click For Summary
SUMMARY

The discussion focuses on using diagonalization to identify the conic section represented by the equation 3x² + 2xy + 3y² - 8 = 0. The Spectral theorem is applied to derive the eigenvalues of the associated matrix A, which are λ = 2 and λ = 4. The orthonormal basis for the eigenspaces is established, leading to a change of coordinates that transforms the original equation into the standard form of an ellipse: (x')²/2² + (y')²/(√2)² = 1.

PREREQUISITES
  • Understanding of diagonalization in linear algebra
  • Familiarity with the Spectral theorem
  • Knowledge of eigenvalues and eigenvectors
  • Basic concepts of conic sections
NEXT STEPS
  • Study the application of the Spectral theorem in different contexts
  • Learn about the properties of conic sections and their equations
  • Explore advanced diagonalization techniques in linear algebra
  • Investigate the geometric interpretations of eigenvalues and eigenvectors
USEFUL FOR

Mathematics students, educators, and professionals in fields requiring linear algebra and conic section analysis will benefit from this discussion.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Use diagonalization to identify the conic section 3x^2 + 2xy + 3y^2 - 8 = 0

Here is a link to the question:

Diagonalization to identify conic section? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello PolkaDots 54,

We'll use the Spectral theorem. We can express $3x^2 + 2xy + 3y^2 - 8 = 0$:
$$(x,y) \begin{pmatrix}{3}&{1}\\{1}&{3} \end{pmatrix} \begin{pmatrix}{x}\\{y}\end{pmatrix}=8 \Leftrightarrow (x,y)A \begin{pmatrix}{x}\\{y}\end{pmatrix}=8$$ Eigenvalues of $A$:
$$\chi(\lambda)=\det (A-\lambda I)=\begin{vmatrix}{3-\lambda}&{1}\\{1}&{3-\lambda}\end{vmatrix}=\lambda^2-6\lambda+8=0\Leftrightarrow \lambda= 2\:\vee\;\lambda=4$$ Basis of the eigenspaces: $$\ker\;(A-2I)\;\equiv\left \{
\begin{array}{rcrcr}
\,x_1 & + & \,x_2 & = & 0 \\
\,x_1 & + & \,x_2 & = & 0
\end{array}
\right .\quad ,\quad B_2=\{(1,-1)\}$$
$$\ker\;(A-4I)\;\equiv\left \{
\begin{array}{rcrcr}
-\,x_1 & + & \,x_2 & = & 0 \\
\,x_1 & - & \,x_2 & = & 0
\end{array}
\right .\quad ,\quad B_4=\{(1,1)\}$$ Eigenvectors orthonormal basis of $\mathbb{R}^2$:
$$B=\left\{\frac{1}{\sqrt{2}}(1,-1),\frac{1}{\sqrt{2}}(1,1)\right\}$$ Change of basis matrix (orthogonal because its columns are orthonormal) :
$$P=\frac{1}{\sqrt{2}}\begin{pmatrix}{\;\;1}&{1}\\{-1}&{1}\end{pmatrix}$$ Change of coordinates:
$$\begin{pmatrix}{x}\\{y} \end{pmatrix}=P \begin{pmatrix}{x'}\\{y'} \end{pmatrix}$$ Then, $$(x,y)A \begin{pmatrix}{x}\\{y} \end{pmatrix}=8\Leftrightarrow (x',y')P^TAP \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\Leftrightarrow (x',y')P^{-1}AP \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\\ (x',y') \begin{pmatrix}{2}&{0}\\{0}&{4} \end{pmatrix} \begin{pmatrix}{x'}\\{y'} \end{pmatrix}=8\Leftrightarrow 2(x')^2+4(y')^2=8\Leftrightarrow (x')^2+2(y')^2=4$$ The equation of the conic with respect to $B$ is $(x')^2+2(y')^2=4$ or equivalently $$\boxed{\dfrac{(x')^2}{2^2}+\dfrac{(y')^2}{(\sqrt{2})^2}=1\quad (\mbox{ellipse})}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K