Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Positive definite operator/matrix question

  1. Jun 28, 2010 #1
    1. The problem statement, all variables and given/known data

    Prove that T is positive definite if and only if

    [tex]\sum_{i,j} A_{ij}a_{j}\bar{a_{i}} > 0 [/tex]
    for any non-zero tuple (a1, .................... , an )

    Let A be [tex][ T ]_{\beta} [/tex]

    where [tex] \beta [/tex] is an orthogonal basis for T

    3. The attempt at a solution

    the sum looked like the matrix multiplication of a n-tuple and a matrix A, so I looked into that and couldn't get anything.. any hints please? I'm also struggle to realize what significant that sum could have, right now it doesn't even mean anything to me.

    Thanks!
     
  2. jcsd
  3. Jun 28, 2010 #2

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    If the capital A's are supposed to be terms in matrix, you might want to think about

    [tex]\overline{a}^tAa[/tex]
     
  4. Jun 28, 2010 #3
    thanks, someone else told me to think about [tex] a^{*} A a [/tex] , but I'm not sure why I'd be considering this. I basically have these things to work with: that if T is positive definite ( one way of the implication ), then all its eigenvalues are positive,T is self-adjoint and < Tx , x > > 0.

    Thanks
     
  5. Jun 28, 2010 #4
    I'm also confused a*A might not make sense.. if a is a column vector in F^n and A is a matrix?
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook