Positive or negative remainder

Click For Summary
SUMMARY

The discussion centers on the validity of negative remainders in division, specifically examining the equation -23 = 5(-4) - 3. Participants confirm that while traditional definitions often restrict remainders to non-negative values, negative remainders can exist within equivalence classes. The consensus is that -3 is indeed a valid remainder when considering the equation in the context of integer division conventions, particularly in programming languages like Ada, where the "rem" operator yields -3 for -23 divided by 5.

PREREQUISITES
  • Understanding of integer division and remainders
  • Familiarity with modular arithmetic
  • Knowledge of programming language conventions for division (e.g., Ada)
  • Basic concepts of equivalence classes in mathematics
NEXT STEPS
  • Research the "rem" operator in Ada and its implications for integer division
  • Explore modular arithmetic and its applications in programming
  • Study the differences in division conventions across various programming languages
  • Learn about equivalence classes and their significance in number theory
USEFUL FOR

Mathematicians, computer scientists, and software developers interested in the nuances of integer division and modular arithmetic conventions.

Ling Min Hao
Messages
22
Reaction score
0
Is 23 = 5(-4)-3 gives a remainder -3 when divided by 5 ? is this statement true ? some of my colleagues said that remainder cannot be negative numbers as definition but I am doubt that can -3 be a remainder too?
 
Physics news on Phys.org
Ling Min Hao said:
Is 23 = 5(-4)-3 gives a remainder -3 when divided by 5 ? is this statement true ? some of my colleagues said that remainder cannot be negative numbers as definition but I am doubt that can -3 be a remainder too?
Usually we consider entire equivalence classes in such cases: Every single element of ##\{\ldots -13, -8, -3, 2, 7 , 12, \ldots\}## belongs to the same remainder of a division by ##5##. We then define all five possible classes
##\{\ldots -15, -10, -5, 0, 5, 10, \ldots\}##
##\{\ldots -14, -9, -4, 1, 6, 11, \ldots\}##
##\{\ldots -13, -8, -3, 2, 7, 12, \ldots\}##
##\{\ldots -12, -7, -2, 3, 8, 13, \ldots\}##
##\{\ldots -11, -6, -1, 4, 9, 14, \ldots\}##
as elements of a new set with five elements ##\{ \; \{\ldots -15, -10, -5, 0, 5, 10, \ldots\}\, , \, \{\ldots -14, -9, -4, 1, 6, 11, \ldots\}\, , \, \ldots \}##.

This notation is a bit nasty to handle, so we choose one representative out of every set. E.g. ##\{[-15],[-9],[12],[3],[-1]\}## could be chosen, but this is still a bit messy to do calculations with. So the most convenient representation is ##\{[0],[1],[2],[3],[4]\}## with the non-negative remainders smaller than ##5##. However, this is only a convention. ##-3## is a remainder, too, belonging to the class ##[2]##. So the answer to your questions is: The statement is true, as all integers are remainders.
 
The remainder is usually required to be between 0 and N-1 inclusive. 23 and -2 (not -3) are in the same equivalence class. This can also be written as 23 = -2 mod 5.
 
mfb said:
The remainder is usually required to be between 0 and N-1 inclusive. 23 and -2 (not -3) are in the same equivalence class. This can also be written as 23 = -2 mod 5.

Sorry it should be -23 = 5(-4) - 3 , so in conclusion is, this statement true ?
 
Ling Min Hao said:
Sorry it should be -23 = 5(-4) - 3 , so in conclusion is, this statement true ?
"-23 divided by 5 is -4 with a remainder of -3". I would consider that statement true.
"-23 divided by 5 is -5 with a remainder of 2". I would also consider that statement to be true.

The convention you use for integer division will determine which of those statements is conventional and which is unconventional.

In many programming languages, integer division follows a "truncate toward zero" convention. For instance, in Ada, -23/5 = -4. The "rem" operator then gives the remainder. So -23 rem 5 = -3.

If one adopts a convention that integer division (by a positive number) truncates toward negative infinity then one would get a different conventional remainder. -23/5 would be -5 and -23 mod 5 would be +2. The Ada "mod" operator uses this convention.

In mathematics, one typically adopts the line of reasoning given by @fresh_42 in post#2 above. The canonical exemplar in the equivalence class of possible remainders is normally the one in the range from 0 to divisor - 1.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
7
Views
2K
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
22
Views
3K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
999