Possibilities for the side and angle of the triangle

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Angle Triangle
Click For Summary
SUMMARY

The discussion revolves around triangle ABC with side length c=18, angle α=π/6, and median length m_c=5. The participants derive the relationships between sides a and b using the median formula and the law of cosines, leading to the quadratic equation a^4 - 293a^2 + 20308 = 0. They also explore the implications of the sine law, specifically how to correctly determine angle γ, emphasizing that γ can take on two possible values due to the properties of the sine function.

PREREQUISITES
  • Understanding of triangle properties and the law of sines
  • Familiarity with the law of cosines
  • Knowledge of quadratic equations and their solutions
  • Basic trigonometric functions and their ranges
NEXT STEPS
  • Study the derivation and application of the law of cosines in triangle geometry
  • Learn about the properties of the sine function and its inverse, arcsin
  • Explore the implications of triangle inequalities on angle determination
  • Investigate the use of medians in triangle properties and relationships
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry and triangle properties will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the triangle ABC with $c=18$, $\alpha=\frac{\pi}{6}$ and the median through $C$ has the length $5$. I want to determine all the possibilities for $a$ and $\gamma$.

I have done the following:

From the median we have the following:
$$m_c=\sqrt{\frac{2a^2+2b^2-c^2}{4}}\Rightarrow m_c^2=\frac{2a^2+2b^2-c^2}{4} \Rightarrow 4m_c^2=2a^2+2b^2-c^2 \\ \Rightarrow 4\cdot 25=2a^2+2b^2-18^2 \Rightarrow 2a^2+2b^2=100+324 \Rightarrow 2a^2+2b^2=424 \\ \Rightarrow a^2+b^2=212 \Rightarrow b^2=212-a^2$$

From the cosine law we have that \begin{align*}&a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos \alpha \\ & \Rightarrow a^2=212-a^2+c^2-2\sqrt{212-a^2}\cdot c\cdot \frac{\sqrt{3}}{2} \\ & \Rightarrow 2a^2=212+324-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 2a^2=536-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow a^2=268-9\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 9\sqrt{3}\sqrt{212-a^2}=268-a^2 \\ & \Rightarrow \left (9\sqrt{3}\sqrt{212-a^2}\right )^2=\left (268-a^2\right )^2 \\ & \Rightarrow 81\cdot 3\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 243\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 51516-243a^2=71824-536a^2+a^4 \\ & \Rightarrow a^4-293a^2+20308=0 \\ & \Rightarrow \left (a^2\right )^2-293\left (a^2\right )+20308=0 \\ & \Rightarrow a^2=\frac{-(-293)\pm \sqrt{(-293)^2-4\cdot 1\cdot 20308}}{2\cdot 1} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{85849 -81232 }}{2} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{4617 }}{2} \\ & \Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ & \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}\end{align*}

From the sine law we have that \begin{align*}&\frac{\sin\alpha}{a}=\frac{\sin \gamma}{c} \\ & \Rightarrow c\sin \alpha=a\sin \gamma \\ & \Rightarrow 18\cdot \frac{1}{2}=a\sin \gamma \\ & \Rightarrow a\sin \gamma=9 \\ & \Rightarrow \sin \gamma=\frac{9}{a} \\ & \Rightarrow \gamma =\arcsin \left (\frac{9}{a} \right ) \ \text{ with } \ a=\frac{293+ 9\sqrt{57}}{2} \ \text{ and } \ a=\frac{293- 9\sqrt{57}}{2}\end{align*} Is everything correct? Could I improve something? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari! (Smile)

Since $\arcsin$ has range $[-\frac\pi 2,\frac\pi 2]$, doesn't that mean we're missing triangles with an oblique $\gamma$? (Wondering)
 
I like Serena said:
Hey mathmari! (Smile)

Since $\arcsin$ has range $[-\frac\pi 2,\frac\pi 2]$, doesn't that mean we're missing triangles with an oblique $\gamma$? (Wondering)

Ahh (Thinking)

So do we have to do something else? (Wondering)
 
mathmari said:
Ahh (Thinking)

So do we have to do something else? (Wondering)

It means that $\sin\gamma=\frac 9a \Rightarrow \gamma=\arcsin\frac 9a$ is incorrect.
The left hand side of the implication has more solutions than the right hand side.
So we have to extend the right hand side to include all solutions that the left hand side has.
We can use the restriction that $0<\gamma<\pi$ though, since it's given that $\gamma$ is an angle in a triangle. (Thinking)
 
I like Serena said:
So we have to extend the right hand side to include all solutions that the left hand side has.
We can use the restriction that $0<\gamma<\pi$ though, since it's given that $\gamma$ is an angle in a triangle. (Thinking)

Do you mean that using that restriction we extend the right hand side? (Wondering)
 
mathmari said:
Do you mean that using that restriction we extend the right hand side? (Wondering)

I mean that we should have:
$$\sin\gamma=\frac 9a\quad\Rightarrow\quad\gamma=\arcsin\frac 9a\lor\gamma=\pi-\arcsin\frac 9a$$
(Thinking)
 
mathmari said:
$$\Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}$$

Didn't we lose a $\sqrt{}$ here? (Wondering)
 
I think the solutions should look like:
\begin{tikzpicture}
\def\b{(9*sqrt(3)+sqrt(19))/2};
\def\ba{(9*sqrt(3)-sqrt(19))/2};
\coordinate (A) at (0,0);
\coordinate (B) at (18,0);
\coordinate (C) at ({\b*cos(30)},{\b*sin(30)});
\coordinate (C') at ({\ba*cos(30)},{\ba*sin(30)});
\coordinate (D) at (9,0);
\draw[orange, ultra thick] (A) -- (B) -- node[above] {a'} (C') node[above] {C'} -- node[below right] {b'} cycle;
\draw[orange, ultra thick] (C') -- node[below left] {5} (D);
\draw[blue, ultra thick] (A) node[below left] {A} -- node[below, xshift=30] {c} (B) node[below right] {B} --node[above right] {a} (C) node[above] {C} -- node[above left] {b} cycle;
\draw[blue, ultra thick] (C) -- node
{5} (D) node[below] {D};
\path[blue, ultra thick] (A) -- node[above] {9} (D) -- node[above] {9} (B);
\path[blue, ultra thick] (A) node[above right, xshift=18] {$\pi/6$};
\draw[blue, thick] (A) +(1.5,0) arc (0:30:1.5);
\end{tikzpicture}

Note that $\gamma > \frac\pi 2$ in both cases. (Thinking)​
 
I like Serena said:
I mean that we should have:
$$\sin\gamma=\frac 9a\quad\Rightarrow\quad\gamma=\arcsin\frac 9a\lor\gamma=\pi-\arcsin\frac 9a$$
(Thinking)

So, in general it holds that $$\sin x=y\Rightarrow x=\arcsin y\lor x=\pi-\arcsin y$$ right? (Wondering)
I like Serena said:
Didn't we lose a $\sqrt{}$ here? (Wondering)

Oh yes (Tmi)
 
  • #10
mathmari said:
So, in general it holds that $$\sin x=y\Rightarrow x=\arcsin y\lor x=\pi-\arcsin y$$ right?

Generally, we have:
$$\sin x=y\quad\Rightarrow\quad x=\arcsin y + 2\pi k\lor x=\pi-\arcsin y + 2\pi k$$
If we know that $0<x<\pi$, we can conclude that $x=\arcsin y\lor x=\pi-\arcsin y$, and also that $y>0$. (Nerd)
 
  • #11
I like Serena said:
Generally, we have:
$$\sin x=y\quad\Rightarrow\quad x=\arcsin y + 2\pi k\lor x=\pi-\arcsin y + 2\pi k$$
If we know that $0<x<\pi$, we can conclude that $x=\arcsin y\lor x=\pi-\arcsin y$, and also that $y>0$. (Nerd)
Ahh ok! I see! Thank you so much! (Mmm)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K