MHB Possibilities for the side and angle of the triangle

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Angle Triangle
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the triangle ABC with $c=18$, $\alpha=\frac{\pi}{6}$ and the median through $C$ has the length $5$. I want to determine all the possibilities for $a$ and $\gamma$.

I have done the following:

From the median we have the following:
$$m_c=\sqrt{\frac{2a^2+2b^2-c^2}{4}}\Rightarrow m_c^2=\frac{2a^2+2b^2-c^2}{4} \Rightarrow 4m_c^2=2a^2+2b^2-c^2 \\ \Rightarrow 4\cdot 25=2a^2+2b^2-18^2 \Rightarrow 2a^2+2b^2=100+324 \Rightarrow 2a^2+2b^2=424 \\ \Rightarrow a^2+b^2=212 \Rightarrow b^2=212-a^2$$

From the cosine law we have that \begin{align*}&a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos \alpha \\ & \Rightarrow a^2=212-a^2+c^2-2\sqrt{212-a^2}\cdot c\cdot \frac{\sqrt{3}}{2} \\ & \Rightarrow 2a^2=212+324-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 2a^2=536-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow a^2=268-9\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 9\sqrt{3}\sqrt{212-a^2}=268-a^2 \\ & \Rightarrow \left (9\sqrt{3}\sqrt{212-a^2}\right )^2=\left (268-a^2\right )^2 \\ & \Rightarrow 81\cdot 3\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 243\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 51516-243a^2=71824-536a^2+a^4 \\ & \Rightarrow a^4-293a^2+20308=0 \\ & \Rightarrow \left (a^2\right )^2-293\left (a^2\right )+20308=0 \\ & \Rightarrow a^2=\frac{-(-293)\pm \sqrt{(-293)^2-4\cdot 1\cdot 20308}}{2\cdot 1} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{85849 -81232 }}{2} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{4617 }}{2} \\ & \Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ & \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}\end{align*}

From the sine law we have that \begin{align*}&\frac{\sin\alpha}{a}=\frac{\sin \gamma}{c} \\ & \Rightarrow c\sin \alpha=a\sin \gamma \\ & \Rightarrow 18\cdot \frac{1}{2}=a\sin \gamma \\ & \Rightarrow a\sin \gamma=9 \\ & \Rightarrow \sin \gamma=\frac{9}{a} \\ & \Rightarrow \gamma =\arcsin \left (\frac{9}{a} \right ) \ \text{ with } \ a=\frac{293+ 9\sqrt{57}}{2} \ \text{ and } \ a=\frac{293- 9\sqrt{57}}{2}\end{align*} Is everything correct? Could I improve something? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari! (Smile)

Since $\arcsin$ has range $[-\frac\pi 2,\frac\pi 2]$, doesn't that mean we're missing triangles with an oblique $\gamma$? (Wondering)
 
I like Serena said:
Hey mathmari! (Smile)

Since $\arcsin$ has range $[-\frac\pi 2,\frac\pi 2]$, doesn't that mean we're missing triangles with an oblique $\gamma$? (Wondering)

Ahh (Thinking)

So do we have to do something else? (Wondering)
 
mathmari said:
Ahh (Thinking)

So do we have to do something else? (Wondering)

It means that $\sin\gamma=\frac 9a \Rightarrow \gamma=\arcsin\frac 9a$ is incorrect.
The left hand side of the implication has more solutions than the right hand side.
So we have to extend the right hand side to include all solutions that the left hand side has.
We can use the restriction that $0<\gamma<\pi$ though, since it's given that $\gamma$ is an angle in a triangle. (Thinking)
 
I like Serena said:
So we have to extend the right hand side to include all solutions that the left hand side has.
We can use the restriction that $0<\gamma<\pi$ though, since it's given that $\gamma$ is an angle in a triangle. (Thinking)

Do you mean that using that restriction we extend the right hand side? (Wondering)
 
mathmari said:
Do you mean that using that restriction we extend the right hand side? (Wondering)

I mean that we should have:
$$\sin\gamma=\frac 9a\quad\Rightarrow\quad\gamma=\arcsin\frac 9a\lor\gamma=\pi-\arcsin\frac 9a$$
(Thinking)
 
mathmari said:
$$\Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}$$

Didn't we lose a $\sqrt{}$ here? (Wondering)
 
I think the solutions should look like:
\begin{tikzpicture}
\def\b{(9*sqrt(3)+sqrt(19))/2};
\def\ba{(9*sqrt(3)-sqrt(19))/2};
\coordinate (A) at (0,0);
\coordinate (B) at (18,0);
\coordinate (C) at ({\b*cos(30)},{\b*sin(30)});
\coordinate (C') at ({\ba*cos(30)},{\ba*sin(30)});
\coordinate (D) at (9,0);
\draw[orange, ultra thick] (A) -- (B) -- node[above] {a'} (C') node[above] {C'} -- node[below right] {b'} cycle;
\draw[orange, ultra thick] (C') -- node[below left] {5} (D);
\draw[blue, ultra thick] (A) node[below left] {A} -- node[below, xshift=30] {c} (B) node[below right] {B} --node[above right] {a} (C) node[above] {C} -- node[above left] {b} cycle;
\draw[blue, ultra thick] (C) -- node
{5} (D) node[below] {D};
\path[blue, ultra thick] (A) -- node[above] {9} (D) -- node[above] {9} (B);
\path[blue, ultra thick] (A) node[above right, xshift=18] {$\pi/6$};
\draw[blue, thick] (A) +(1.5,0) arc (0:30:1.5);
\end{tikzpicture}

Note that $\gamma > \frac\pi 2$ in both cases. (Thinking)​
 
I like Serena said:
I mean that we should have:
$$\sin\gamma=\frac 9a\quad\Rightarrow\quad\gamma=\arcsin\frac 9a\lor\gamma=\pi-\arcsin\frac 9a$$
(Thinking)

So, in general it holds that $$\sin x=y\Rightarrow x=\arcsin y\lor x=\pi-\arcsin y$$ right? (Wondering)
I like Serena said:
Didn't we lose a $\sqrt{}$ here? (Wondering)

Oh yes (Tmi)
 
  • #10
mathmari said:
So, in general it holds that $$\sin x=y\Rightarrow x=\arcsin y\lor x=\pi-\arcsin y$$ right?

Generally, we have:
$$\sin x=y\quad\Rightarrow\quad x=\arcsin y + 2\pi k\lor x=\pi-\arcsin y + 2\pi k$$
If we know that $0<x<\pi$, we can conclude that $x=\arcsin y\lor x=\pi-\arcsin y$, and also that $y>0$. (Nerd)
 
  • #11
I like Serena said:
Generally, we have:
$$\sin x=y\quad\Rightarrow\quad x=\arcsin y + 2\pi k\lor x=\pi-\arcsin y + 2\pi k$$
If we know that $0<x<\pi$, we can conclude that $x=\arcsin y\lor x=\pi-\arcsin y$, and also that $y>0$. (Nerd)
Ahh ok! I see! Thank you so much! (Mmm)
 

Similar threads

Back
Top