Possible to derive Boltzmann distribution using W, not lnW?

  • Thread starter Darren73
  • Start date
  • #1
8
0
Hi all, in following the many available derivations of the boltzmann distribution I was trying to do it by maximizing W, which is N choose n1,n2,...nt., instead of lnW, because it should give the same answer (since W is monotonically increasing with lnW, am I wrong?).

So given the two constraint equations of constant particle number and energy, [tex]
g=\sum_{i}n_{i}=N,

h=\sum_{i}n_{i}\epsilon_{i}=E
[/tex]


And the Stirling approximation of W, [tex]
W=N^{N}n_{1}^{-n_{1}}n_{2}^{-n_{2}}...n_{t}^{-n_{t}}
[/tex]

And maximizing W with the above constraints (using Lagrange multipliers) gives the following t equations, [tex]
\frac{\partial W}{\partial n_{i}}-\alpha\frac{\partial g}{\partial n_{i}}-\beta\frac{\partial h}{\partial n_{i}}=0
[/tex]

Which gives,[tex]
\frac{\partial W}{\partial n_{i}}-\alpha-\beta\epsilon_{i}=0
[/tex] [tex]
\frac{\partial W}{\partial n_{i}}=C_{i}n_{i}^{n_{i}}\left(\ln n_{i}+1\right) [/tex] [tex]
C_{i}n_{i}^{n_{i}}\left(\ln n_{i}+1\right)=\alpha+\beta\epsilon_{i} [/tex]

Where Ci is some constant of the other nj's and N. Proceeding from this point has proven fruitless for me to isolate ni and apply the constraints. Does anyone know if this can be done? Or do you have to use lnW? It would seem odd to me if this cannot be done by maximizing W directly. And they should give the same distribution, namely [itex]n_{i}=N\exp -\beta \epsilon_{i} [/itex], correct?
 

Answers and Replies

  • #2
Dr. Courtney
Education Advisor
Insights Author
Gold Member
3,261
2,405
Given this long without a reply, perhaps a search at scholar.google.com would yield some insight.
 

Related Threads on Possible to derive Boltzmann distribution using W, not lnW?

  • Last Post
Replies
1
Views
438
Replies
2
Views
2K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
5K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
2
Views
1K
Replies
4
Views
6K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
2
Views
850
Top